共查询到20条相似文献,搜索用时 78 毫秒
1.
针对短波红外成像系统在雾霾天气下存在图像质量模糊、分辨率低等问题,本文提出了一种基于暗通道先验理论的短波红外图像去雾算法。本文首先通过改进的暗通道先验得到暗通道图像数据,然后基于暗通道数据对大气光进行估计;为了避免目标局部高亮或细节模糊,采用引导滤波和多尺度Retinex(Multi-scale retinex,MSR)对透射率图进行细化和增强处理,最后结合大气散射模型来反演出去雾图像。实验结果表明,经此算法处理后的短波红外图像在主观视觉和客观指标方面均得到了较好的验证,去雾效果显著、细节特征丰富且明亮度适宜。 相似文献
2.
目前针对单幅图像去雾处理,暗通道先验算法具有较好的效果,但处理时间长,需要很大的储存资源与计算资源.本文在暗通道先验算法基础上提出一种快速去雾算法,首先用"边缘替代法"代替原算法中的抠图处理,显著降低了计算复杂度;然后针对明亮区域暗通道失效情况,提出了一种基于双阀值的明亮区域识别方法和透射率修正机制,提高了暗通道先验的适用范围;最后对去雾图像再采用非线性对比度拉伸进行增强处理,改善了去雾图像的视觉效果.实验表明:本文算法不仅极大地降低了计算复杂度,而且去雾能力优于原算法. 相似文献
3.
4.
在雾、霾等天气条件下,大气粒子的散射作用使环境的能见度偏低,视觉系统采集到的图像严重降质。基于暗通道先验的图像复原方法因其去雾效果自然、约束条件少,且易于实现等优点而受到广泛关注。但是,该方法的去雾效果受尺度(暗通道的求解半径)影响很大,对于不同场景的图像,不存在一个普遍适用的最优尺度。针对该问题,文中提出一种尺度自适应方法,根据图像的颜色和边缘特征自适应地调节暗通道的尺度范围,得到像素级的暗通道求解尺度,兼顾大尺度求解色彩失真小和小尺度求解光晕失真小等优点。此外,针对暗通道去雾方法会使天空光估计点落到前景区域的问题,提出了一种改进的天空光估计方法,可使估计点鲁棒地落到与其物理意义相符的背景区域。对多种雾化场景图像的处理结果表明:文中方法适应性强、去雾效果自然,且对比度提升显著。 相似文献
5.
6.
针对暗通道先验去雾算法中存在的块效应、算法复杂度高等问题,提出了一种改进的基于暗通道先验的去雾算法.首先,通过暗通道先验去雾算法得到粗略透射率,再通过峰值信噪比自适应调节雾气参数,以获取最优透射率.然后,将上述结果分别作为多层感知器的输入向量和目标向量进行训练,以建立粗略透射率到最优透射率之间的映射并得到最优透射率.最... 相似文献
7.
无人机航拍技术因其诸多优势,已被应用在越来越多的场景中.但因空气污染或气候原因使得某些地区雾霾较多,导致拍摄的图像降质明显.针对该问题,同时对于无人机遥感图像较高的去雾速度要求,提出了一种基于改进暗通道先验模型的无人机遥感图像去雾算法.首先使用下采样法和插值算法改进暗原色先验模型的透射率计算,大幅降低了计算复杂度;然后针对图像偏白色区域的去雾处理,采用结合容差机制恢复无雾图像的方法,减少了偏色现象;最后对去雾图像采用自动色阶算法进行图像增强处理,提升了去雾后图像的亮度.实验表明,该算法在图像去雾的精确性和效率上均优于原算法. 相似文献
8.
9.
讨论了暗原色先验去雾算法的原理,指出其有去雾时在天空等明亮区域色彩失真的缺陷。针对这个缺陷提出了改进方法,该方法通过估算反图像的透射率修正透射率图以避免色彩失真。该算法可弥补传统算法在明亮区域透射率估算值较低导致色彩失真的不足。实验结果表明该算法有效。 相似文献
10.
传统暗通道去雾算法计算的透射率图存在块效应,易造成复原图像白边现象,同时图像中天空、白云等明亮区域不适用暗通道原理,易引起去雾图像失真。本文结合引导滤波和自适应容差机制提出了一种基于多尺度暗通道和自适应容差的去雾算法,可有效避免以上问题。首先,计算3种不同尺寸滤波窗口下的透射率初估计,并对估计结果进行有效融合;接着,通过引导滤波对透射率进行细化,以获得鲁棒性和准确性更好的多尺度透射率图;然后,引入自适应容差策略对图像中明亮区域的透射率进行修正;最后,由于暗通道去雾图像整体亮度偏暗,因此对去雾图像的亮度和对比度进行亮度补偿。实验结果表明,采用不同算法对不含和少量天空区域的图像去雾,信息熵约提高0.2 bit/symbol,平均梯度约提高0.5,PSNR约提高8 dB。对较多和大量天空区域图像去雾,PSNR约提高3 dB,SSIM约提高0.1。较好地实现了去雾图像细节清晰、颜色可靠且明亮区域去雾效果良好等要求。 相似文献
11.
针对传统暗原色先验去雾算法存在的亮区域色彩失真、去雾参 数人工设定等问题,提出了一种基于暗原色先验改进的自适应图像去雾方法。首先,提出快 速OSTU法对雾霾图像亮暗区域进行自适应分割,并分区域获取亮暗区域的暗原色值;其次, 根据亮区域分布情况,对不同区域大气光强进行自适应估计;接着,通过分析雾霾图像直方 图特征,提出采用灰度集中度法自适应计算去雾系数;然后,运用色阶自适应调整方法进行 输出图像的色彩调整;最后,通过开展对比实验,验证了本文算法的优越性。主客观 评价结果表明:本文方法无需人为设定去雾参数,具有较好的 鲁棒性,可适用于多种浓度、 各种场景雾霾图像的去雾处理,获取的图像清晰、色彩自然,对比度高。 相似文献
12.
基于暗通道先验的图像增强技术在图像的去雾和增强方面具有较好的图像增强效果.针对基于暗通道先验图像增强算法在处理有雾图像存在大面积白色高亮区域时出现的失真,提出了基于自适应阈值的改进暗通道先验算法.该算法在对图像进行直方图统计的基础上,先判断图像是否存在大面积白色高亮区域,并对区域的面积进行标识和统计,得到自适应系数β,再利用该系数对暗通道先验算法进行修正,最终进行对比度增强实现图像的去雾增强效果.实验结果表明,该方法能够有效消除图像去雾过程中出现的失真,提升图像质量,具有较高的实用价值. 相似文献
13.
14.
针对暗原色先验模型对于图像明亮区域不适应,暗原色估计偏大,导致透射率估计偏小,出现色彩失真现象,本文介绍一种新的暗原色修正方法。提出一种逆暗原色概念,将雾化图像的暗原色与逆暗原色进行融合处理得到一种新的修正暗原色,从而获得比较真实的明亮区域透射率,有效消除了明亮区域的色彩失真。以有效细节强度、色调还原程度、结构信息及综合测评作为图像质量评价指标,与目前流行算法进行对比实验,本文算法的色调还原程度指标平均值提高41.1%,综合测评指标平均值提高48.7%。实验结果表明,本文算法在改善明亮区域色彩失真及提高去雾图像总体质量方面优于目前流行算法。 相似文献
15.
为了实现基于物理模型的图像复原去雾算法,文中提出了一种改进的基于暗通道先验的图像去雾算法。介绍了雾天图像退化模型和基于该雾天图像退化模型的几种去雾算法。详细介绍了何恺明提出的基于暗通道先验的去雾算法,该算法在估计光线传播图时使用的基于导向滤波的软抠图非常耗时,经过改进,直接使用景深估计光线传播图,算法运行时间大大减少。最后,使用MATLAB对改进的去雾算法进行仿真,并与原算法的运行时间进行比较。结果显示新方法对光线传播图的估计可靠,运行时间对比改进前大约下降60%,实时性大大提高。带有天空的有雾图像去雾后色斑和光晕大幅减少,取得了很好的效果。改进的去雾算法运行速度快、去雾效果好,新提出的光线传播图估计方法可靠,并且去雾过程中得到的光线传播图可以用于其他应用。 相似文献
16.
17.
针对在雾霾环境下获取的图像降质严重、现有算法去雾图结构细节信息丢失较多的问题,提出了一种结合暗通道先验(DCP)和马尔可夫随机场(MRF)的单幅图像去雾算法。该算法先采用子块部分重叠局部直方图均衡(POSHE)对原始雾图进行增强,以提高其对比度,并通过DCP算法获取优化后的透射率;利用MRF模型对图像结构细节信息的约束特性,对透射率进行建模,以进一步细化透射率;由天空域的显著特征,通过分块搜索法求取大气光值。与传统去雾算法相比,该算法能得到更精确的透射率图,有效保持图像结构信息,去雾后的图呈现出丰富的细节和较真实的色彩视觉效果。 相似文献
18.
基于暗原色和加权形态学滤波的图像去雾算法 总被引:1,自引:1,他引:1
针对雾天图像能见度低、对比度差的特点,提出一种自动消除雾的方法:基于暗原色和加权形态滤波的增强算法。首先引入暗原色先验信息,然后利用形态学滤波方法估计雾浓度图。该方法既能平滑雾浓度图,又能很好地保留场景的边缘,使估计出的雾浓度图更加精确。最后恢复去雾图像。实验结果表明,该方法简单快速有效,能够很好地达到去雾目的,并且较好地保留图像边缘细节。 相似文献
19.
暗通道先验算法虽然在单幅图像去雾方面取得了一定的效果,但是该算法运行时间较长,另外对环境光的计算不太准确,不适用于天空区域,会导致复原图像色彩失真、亮度偏暗。针对这些缺陷,本文提出一种改进的White Patch Retinex算法,对原有图像去雾算法进行优化。首先,通过改进的White Patch Retinex算法计算出环境光。其次通过暗通道先验算法获得透射率。最后根据得到的环境光和透射率,求解大气散射模型,从而得到去雾后的图像。实验结果表明,该算法不仅运行时间较短,对分辨率为600×800的图像处理时间平均为5 s左右,且能解决天空区域失真问题,去雾后的图像具有较高的亮度和对比度。 相似文献