首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effects of impregnation with boron compounds Borax (BX), Boric acid (BA), BX + BA, Imersol-Aqua (IAQUA) and Timbercare-Aqua (TAQUA) on combustion properties of the laminated wood materials produced combination of Oriental beech and poplar veneers bonded with Desmodur-VTKA (DV) and Poly(vinyl acetate) (PVAc) adhesives. The test samples, prepared from beech (Fagus orientalis Lipsky) and poplar (Populus nigra Lipsky) woods, were impregnated boron compounds by vacuum, IAQUA by dipping and TAQUA by brushing methods according to ASTM D 1413-76-99 and directions of the manufacturer. The laminated wood materials were prepared in the form of five layers, 4 mm thickness from the impregnated beech and poplar veneers according to TS EN 386. Combustion properties of samples after laminated and impregnated process were determined according to ASTM E 160-50. Considering the interaction of combustion type and impregnation materials, combustion temperature was found the highest in flame source combustion (FSC) + TAQUA (528.150 °C) but the lowest in without flame source combustion (WFSC) + BA (391.333 °C). Consequently, boron compounds and IAQUA showed a decreasing impact on combustion properties of the laminated wood materials, produced combination of beech and poplar veneers, bonded with DV. In consequence, impregnation with boron compounds and Imersol-Aqua of the laminated wood materials, bonded with Desmodur-VTKA, provides security for the usage of having high risk of fire.  相似文献   

2.
The aim of this study was to investigate the impacts of impregnation with Imersol-aqua on the modulus of elasticity in bending (MOE) of some laminated wood materials. For this aim, oriental beech (Fagus orientalis Lipsky), oak (Quercus petrea Liebl.), Scotch pine (Pinus sylvestris Lipsky), oriental spruce (Picea orientalis Lipsky) and Uludağ fir (Abies bornmülleriana Lipsky) wood materials impregnated with Imersol-aqua according to ASTM D 1413-99 and producers’ definition. Laminated wood samples were produced from impregnated wood materials according to TS EN 386 in the five ply form (4 mm each) from oriental beech, oak, Scotch pine, Uludağ fir and oriental spruce wood by using Desmodur-VTKA adhesive. The MOE values were measured according to TS EN 408. Consequently, the MOE of impregnated + laminated (I + LW) softwoods, pine, spruce and fir increased, respectively by 8.07%, 2.62% and 2.45% whereas the MOE of laminated + laminated hardwoods, beech and oak decreased, respectively by 5.06% and 4.37% with respect to laminated control samples (LW). Considering the interaction of wood type and process, the MOE was obtained from laminated oriental beech, whereas the lowest was found for impregnated Uludağ fir. In consequence, in the massive construction and furniture elements that the MOE after the impregnation and lamination (I + LW) is of great concern, oriental beech and Scotch pine materials could be recommended.  相似文献   

3.
In this work fracture characterization of wood bonded joints is performed. The main objective is to define a fracture criterion under mixed-mode loading (I + II), in order to provide a safer and reliable design of wood bonded joints. Experimental fracture characterization tests were carried out. For mode I and mode II loading, the double cantilever beam and the end notched flexure tests were selected. Under mixed-mode I + II loading the mixed-mode bending test was used considering different mixed-mode ratios. A data reduction scheme based on the specimen compliance, the beam theory and on a crack equivalent concept was used to overcome the difficulties inherent to the above referred tests. The fracture linear energetic criterion showed to be adequate to describe the fracture envelop with an exception, as discussed in the paper.  相似文献   

4.
Benefits of adding Tall oil pitch (TOP), Styrene-butadiene-styrene (SBS) and TOP + SBS to AC-10 in variant quantities to AC-10 were investigated. Initial research was done to determine the physical properties of asphalt cement and modifiers.Seven asphalt binder formulations were prepared with 8% of TOP; 8 + 3, 8 + 6 and 8 + 9% of TOP + SBS, respectively; 3, 6 and 9% of SBS by total weight of binder. After that, Marshall samples were prepared by using the modified and unmodified asphalt binders.Additionally, compression strength test were done in different conditions to determine water, heat and frost resistance of all Marshall samples.Fatigue life and plastic deformation tests for Marshall samples (for different asphalt mixtures: modified and unmodified) were carried out using PC controlled repeated load indirect tensile test equipment developed at Suleyman Demirel University by Tigdemir (SDU-Asphalt Tester).The results of investigation indicate that asphalt mixture modified by 8% TOP + 6% SBS gives the best results in the tests that were carried out in this study, so that, this modification increases physical and mechanical properties of asphalt binder.  相似文献   

5.
This study investigates the abrasion–erosion resistance of high-strength concrete (HSC) mixtures in which cement was partially replaced by four kinds of replacements (15%, 20%, 25% and 30%) of class F fly ash. The mixtures containing ordinary Portland cement were designed to have 28 days compressive strength of approximately 40–80 MPa. Specimens were subjected to abrasion–erosion testing in accordance with ASTM C1138. Experimental results show that the abrasion–erosion resistances of fly ash concrete mixtures were improved by increasing compressive strength and decreasing the ratio of water-to-cementitious materials. The abrasion–erosion resistance of concrete with cement replacement up to 15% was comparable to that of control concrete without fly ash. Beyond 15% cement replacement, fly ash concrete showed lower resistance to abrasion–erosion compared to non-fly ash concrete. Equations were established based on effective compressive strengths and effective water-to-cementitious materials ratios, which were modified by cement replacement and developed to predict the 28- and 91-day abrasion–erosion resistance of concretes with compressive strengths ranging from approximately 30–100 MPa. The calculation results are compared favorably with the experimental results.  相似文献   

6.
We deal with the textural aspects, porometry and hydric behaviour of combinations of building materials and their durability under attack by salt crystallisation and freezing. We selected 4 types of lime mortar (pure lime mortar, lime mortar + air-entraining agent, lime mortar + pozzolana and lime mortar + air-entraining agent + pozzolana) which were used in combination with either brick or calcarenite stone. Lime mortars were chosen because they are compatible with traditional building materials, including the bricks and calcarenites that were widely used in the historical buildings that make up our architectural heritage. There are more similarities between the pore size ranges in calcarenites and mortars than there are between those in bricks and mortars. In all cases, a fine layer of calcite microcrystals develops at the contact surface between the mortar and the stone or brick. This is produced by the transformation of the portlandite, which concentrates in this area due to capillary moisture migration. This surface may on the one hand represent an obstacle to the flow of water between the different parts of the system formed by these materials, but on the other it may also favour greater adherence between the components, especially in the calcarenite + mortar combination, which proved to be the most resistant to deterioration in the freeze–thaw tests.  相似文献   

7.
The purpose of this study is to examine the basic properties of polyester mortars using a fine tailings (FT) from an abandoned mine as a filler. FT with sizes of 10–69 μm is obtained through the centrifugal separation of tailing (TA), and tested for such basic properties, as particle shape, fineness of size distribution, liquid resin absorption, and heavy metal leaching. Polyester mortars with FT and ground calcium carbonate (GC) are prepared with various filler-(filler + binder) ratios and replacements of GC with FT, and tested for working life, flexural and compressive strengths, and chemical corrosion resistance. As a result, FT has almost the same properties as GC in terms of particle shape, fineness of size and liquid resin absorption. The working life of polyester mortars is prolonged with an increased filler-(filler + binder) ratio and replacement of GC with FT. From the vantagepoint of the strength development of the polyester mortars with FT, it is recommended that the filler-(filler + binder) ratio and replacement of GC with FT should be controlled at 50% or less. Mass and strength changes are generally lower in mortars containing FT than in those containing GC in all chemical solutions.  相似文献   

8.
This paper reports the results of a durability study of the effects of exposing externally-bonded CFRP-concrete beams to three elevated water temperatures (25 °C, 40 °C and 60 °C). The effects of the heated water environments on the adhesive bonding layer between the CFRP and concrete beams were evaluated by quantifying: (1) the changes of delaminations within the adhesive bonding layer, (2) the changes in resistance to direct shear force and (3) the changes of failure mode distribution. Before the exposure, the condition of the adhesive bonding layer was inspected by infrared thermography (IRT). After exposure, the deterioration of the same bonding layer and failure mode distributions were measured by analyzing the visual photos on the failed CFRP strips. The failure modes were found to be affected largely by the combined effect of elevated temperature and moisture ingress, in which three types were identified: failure at concrete beams, at adhesive bonding layer and interface between CFRP strip and concrete. With these methods, results of 54 specimens show that the adhesive bonding layers of all the specimens had gradually deteriorated in the 40 °C and 60 °C water baths. This deterioration was due to the weakening of the adhesive bonding layers when the glass transition temperature (Tg) or the heat distortion temperature (HDT) was approached or even exceeded, and gradual development of delaminations at adhesive bonding layer.  相似文献   

9.
In this study, it is aimed to describe the effects of adhesives (PVAc, Desmodur-VTKA and phenol formaldehyde) on Uludag fir (Abies Bornmüllerina M.) and Oriental beech (Fagus Orientalis Lipsky) cut tangentially and exposed to heating tests (40, 60, and 80 °C) and heating duration (30, 60 and 90 days) and controls. Consequently, when compared to control samples, the highest decrease of 26.2% in average with Oriental beech and 18.5% in average with Uludag fir was obtained with the samples bonded with D-VTKA adhesive kept for 90 days. At high temperatures phenol formaldehyde adhesives can be advised as the building material used for long terms.  相似文献   

10.
The conversion of large amount of demolished waste into alternate source of building material will contribute not only as a solution to growing waste problem of waste disposal, but also it will conserve the natural resources of other building material and thereby reduce the cost of construction. The present work makes an effort to safe and economic use of recycled mortar as a supplementary material. Conventional and recycled brick prisms were casted with varying percentage of demolished waste added (0%, 10%, 20%, 30%) replacing cement and tested under compression testing machine. As the replacement is increasing, the strength is decreasing. A 1:4 scale single storey brick model was fabricated on shake table for dynamic testing using pure friction isolation system (friction material for coarse dry sand, μ = 0.36). Pure friction isolation technique can be adopted economically in developing countries where low-rise building prevails due to their low cost. The superstructure was separated from the foundation at plinth level, so as to permit sliding of superstructure during severe earthquake. The observed values of acceleration and displacement responses compare fairly with the analytical values of the analytical model except in displacement beyond 2.4 kN. It also concluded that 20% replacement of cement by demolished waste could be safely adopted without endangering the safety of the masonry structures under seismic load.To have an idea that how much energy is dissipated through this isolation, the same model with fixed base was tested and results were compared with the isolated free sliding model and it has been observed that more than 70% energy is dissipated through this pure friction isolation technique. In case of base isolation, no visible cracks were observed up to a table force of 4.25 kN (1300 rpm), whereas for fixed base failure started at 800 rpm and complete bond failure was observed at 1300 rpm.  相似文献   

11.
《Energy and Buildings》2002,34(8):845-852
The bristle of a rotating duct cleaning brush was modelled using large deformation elastic theory. In addition to contact and centrifugal forces, especially the effect of air drag was studied in the article. The dependence of the drag coefficient on air speed was simulated for numerical computations by fitting a fourth degree polynomial in logarithmic co-ordinates on point-wise data for a cylindrical body from literature.The results show that the effect of air drag on the deflection of the single bristle (L=1 mm, d=1 mm, ρb=1140 m3/kg, EI=2 GPa) is negligible at normal rotating speeds of the brush (300−1000 rpm). However, air drag may affect considerably the deflection of a bristle, which has a large diameter and low density. As to be expected, air drag decreases the contact force between the single bristle tip and duct surface even at low rotation speed of bristle (<50 rpm). Thicker or stiffer bristle decreases the deflection of the rotating bristle and increases the magnitude of the contact normal force between the bristle tip and the duct surface. The model presented combined with the Mathcad software seems to be a useful tool in the cleaning brush design work.  相似文献   

12.
Glass fibre reinforced polymer (GFRP) composite laminates were investigated for improving the tensile capacity of joint splice connections in the chords of the arch wood trusses of the roof of a historic structure, as part of an overall seismic rehabilitation. Specimens consisting of two 76 mm × 305 mm butt ended heavy dimension lumber members with GFRP laminate connections were tested in tension to simulate the chords of the wood trusses of the historic structure. The GFRP-reinforced splice connections were of two types: Type I had the composite applied to only one 305 mm wood face due to accessibility restrictions; Type II had the composite applied to the two 76 mm wood faces. Three different GFRP composite materials were used with either clamped or mechanically fastened splice connections. Splice connections with intentional offsets were also tested. The GFRP-reinforced splice connections provided a significant improvement of the tensile capacity for resisting the combined gravity and seismic loads. The rehabilitation method was considered to be successful and it was determined that implementation would reduce the overall seismic vulnerability of the historic structure. As a result, the method was implemented to connect the chord joint splices of the roof arch wood trusses of the structure.  相似文献   

13.
This paper presents the design of concrete mixes made with used-foundry (UFS) sand as partial replacement of fine aggregates. Various mechanical properties are evaluated (compressive strength, and split-tensile strength). Durability of the concrete regarding resistance to chloride penetration, and carbonation is also evaluated. Test results indicate that industrial by-products can produce concrete with sufficient strength and durability to replace normal concrete. Compressive strength, and split-tensile strength, was determined at 28, 90 and 365 days along with carbonation and rapid chloride penetration resistance at 90 and 365 days. Comparative strength development of foundry sand mixes in relation to the control mix i.e. mix without foundry sand was observed. The maximum carbonation depth in natural environment, for mixes containing foundry sand never exceeded 2.5 mm at 90 days and 5 mm at 365 days. The RCPT values, as per ASTM C 1202-97, were less than 750 coulombs at 90 days and 500 coulombs at 365 days which comes under very low category. Thereby, indicating effective use of foundry sand as an alternate material, as partial replacement of fine aggregates in concrete. Micro-structural investigations of control mix and mixes with various percentages of foundry sand were also performed using XRD and SEM techniques. The micro-structural investigations shed some light on the nature of variation in strength at the different replacements of fine aggregates with foundry sand, in concrete.  相似文献   

14.
This paper presents an evaluation of energy-related and economic aspects of production of thermal energy to heat a family house with wood briquette. The object of the study was a detached house with an area of 247 m2, situated in Olsztyn, in the north-east of Poland. The study lasted three years, from October 2006 to September 2009. The highest monthly consumption of wood briquette for thermal energy production: heating water for the central heating system and hot utility water production were recorded in January (1052–1333 kg/month). The average annual briquette consumption ranged from 6.36 to 6.72 t/year. With the mean lower heating value of briquette of 17.99 GJ/t, the mean consumption of energy in the fuel ranged from 114 to 121 GJ/year. The annual cost of heat production for a family house with briquette as fuel ranged from €572 to €651, during the 2006/2007 and 2008/2009 seasons, respectively. It would have been cheaper by €187–228 year?1 to heat the house with seasoned willow chips, whereas using alternative fuels, such as hard coal (fraction 0.5–2.5 cm) oak pellets, natural gas and heating oil would have increased the cost of heat production. If the last of those fuels had been used, it would have increased the cost 3.5-fold as compared with wood briquette.  相似文献   

15.
The geological conditions surrounding the Tianpingshan Tunnel of the Gui-Guang railway in Guizhou Province are very complex. To study the mechanical regularity of the Tianpingshan Tunnel during construction process, a 3-D physical model was carried out based on the conditions of the section located between 372.335 km and 372.435 km (DK372 + 335  DK372 + 435) of the tunnel. The 3-D physical model was conducted to clarify the effect of the dipping formation and bidirectional excavation on the tunnel deformation. The results of the crown settlements, floor heave and radial displacement of the equivalent sections in the physical model were analyzed. In the physical model the results of the model test show that in the section located at 25 cm the crown settlements are much smaller than those in the section of 175 cm. And the floor heave in the section located at 25 cm is larger than that located at 175 cm. Furthermore, the radial displacement in horizontal direction is found to be much larger than that in vertical direction in the section located at 25 cm. However, the variation characteristics of radial displacement in the section located at 175 cm are reverse to that in the section located at 25 cm. The numerical study and the field measurements were compared with the model test to demonstrate the effectiveness and accuracy of the results of the numerical study.  相似文献   

16.
This paper presents the results of an experimental program to investigate the effect of high temperature on the performance of concrete externally confined with FRP sheets. For this purpose, a two-phase experimental program was conducted. In the first phase, 42 standard 100 × 200 mm concrete cylinders were prepared. Out of these specimens, 14 cylinders were left unwrapped; 14 specimens were wrapped with one layer of CFRP sheet; and the remaining 14 specimens were wrapped with one layer of GFRP sheet. Some of the unconfined and FRP-confined specimens were exposed to room temperature; whereas, other cylinders were exposed to heating regime of 100 °C and 200 °C for a period of 1, 2 or 3 h. After high temperature exposure, specimens were tested under uniaxial compression till failure. The test results demonstrated that at a temperature of 100 °C (a little more than the glass transition temperature (Tg) of the epoxy resin), both CFRP- and GFRP-wrapped specimens experienced small loss in strength resulting from melting of epoxy. This loss of strength was more pronounced when the temperature reached 200 °C. In the second phase of the experimental program, three 100 × 100 × 650 mm concrete prisms were prepared and then overlaid by one layer of CFRP and GFRP laminates for conducting pull-off strength tests as per ASTM D4541 – 09. The objective of this testing was to evaluate the degradation in bond strength between FRP and concrete substrate when exposed to elevated temperature environments. One prism was exposed to room temperature whereas the other two specimens were exposed to heating regime of 100 °C and 200 °C for a period of 3 h. It was concluded that a significant degradation in the bond strength occurred at a temperature of 200 °C especially for CFRP-overlaid specimens.  相似文献   

17.
This study describes a laboratory investigation of the influence of thiosemicarbazide (TSC) on the corrosion of reinforcing steel and the compressive strength of concrete. The effect of TSC on the corrosion resistance of steel reinforced concrete was evaluated by carrying out electrochemical tests in NaCl and NaCl + TSC solutions for 60 days. Polarisation resistance (Rp) values of TSC added reinforced concrete were much higher than those without TSC. Similarly, AC impedance spectra revealed that the resistance of TSC mixed electrodes were also quite higher than those without. The compressive strength of concrete specimens containing TSC was measured and an increase of 20–25% was observed.  相似文献   

18.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

19.
Efforts have been made to make high strength alpha plaster from phosphogypsum, a by-product of phosphoric acid industry. Phosphogypsum was autoclaved in slurry form (phosphogypsum 50% + water 50%, by wt.) in the laboratory at different steam pressures for different durations in presence of chemical admixtures. It was found that with small quantity of chemical admixture (sodium succinate/potassium citrate/sodium sulphate), alpha plaster of high strength can be produced. The optimum pressure and duration of autoclaving was found to be as 35 psi and 2.0 h, respectively. The alpha plaster was examined for making cementitious binders by admixing hydrated lime, fly ash, granulated blast furnace slag, marble dust and chemical additives with alpha plaster. Data showed that cementitious binder of compressive strength of 22.0 and 30 MPa (at 28 days of curing at 40° and 50 °C) and low water absorption was produced. DTA and SEM studies of the binder showed formation of CSH, ettringite and C4AH13 as main cementitious products to give strength.  相似文献   

20.
This investigation reports on a comparative study of the residual compressive strength at different temperatures of alkali-activated fly ash (AAFA) pastes chemically activated using sodium silicate with three different concentrations named 20, 30 and 40 (wt.%). The behaviour of different mixtures in conditions of rapid temperature changes was studied. Water quench test was applied to determine thermal shock resistance. The traditional Portland cement pastes were used as a reference. The temperatures ranging from 200 °C to 1000 °C with an increment of 200 °C has been examined. Pore solution pH and compressive strengths before and after exposure to elevated temperatures were determined. The various decomposition phases formed were identified using X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTG) and scanning electron microscopy (SEM). The results indicated that fly ash activated by sodium silicate is more able to resist degradation caused by exposure to elevated temperature than Portland cement system as its relative strengths are superior. In the hardened AAFA pastes, as activator concentration dosage increased as the relative compressive strengths and thermal shock resistance decreased. The AAFA system is able to maintain a sufficient high pH to retain the passive protective layer on the surface of any reinforcing steel present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号