共查询到20条相似文献,搜索用时 0 毫秒
1.
《Expert systems with applications》2014,41(16):6995-7004
Supplier evaluation and selection is an important group decision making problem that involves not only quantitative criteria but also qualitative factors incorporating vagueness and imprecision. This paper proposes a novel fuzzy multi-criteria group decision making framework for supplier selection integrating quality function deployment (QFD) and data envelopment analysis (DEA). The proposed methodology allows for considering the impacts of inner dependence among supplier assessment criteria through constructing a house of quality (HOQ). The lower and upper bounds of the weights of supplier assessment criteria are identified by adopting fuzzy weighted average (FWA) method that enables the fusion of imprecise and subjective information expressed as linguistic variables. An imprecise DEA methodology is implemented for supplier selection, which employs the weights of supplier assessment criteria computed by FWA utilizing the data from the HOQ and the supplier ratings with respect to supplier assessment criteria. The application of the proposed framework is demonstrated through a case study in a private hospital in Istanbul. 相似文献
2.
《Expert systems with applications》2014,41(15):6718-6727
A combination of cardinal and ordinal preferences in multiple-attribute decision making (MADM) demonstrates more reliability and flexibility compared with sole cardinal or ordinal preferences derived from a decision maker. This situation occurs particularly when the knowledge and experience of the decision maker, as well as the data regarding specific alternatives on certain attributes, are insufficient or incomplete. This paper proposes an integrated evidential reasoning (IER) approach to analyze uncertain MADM problems in the presence of cardinal and ordinal preferences. The decision maker provides complete or incomplete cardinal and ordinal preferences of each alternative on each attribute. Ordinal preferences are expressed as unknown distributed assessment vectors and integrated with cardinal preferences to form aggregated preferences of alternatives. Three optimization models considering cardinal and ordinal preferences are constructed to determine the minimum and maximum minimal satisfaction of alternatives, simultaneous maximum minimal satisfaction of alternatives, and simultaneous minimum minimal satisfaction of alternatives. The minimax regret rule, the maximax rule, and the maximin rule are employed respectively in the three models to generate three kinds of value functions of alternatives, which are aggregated to find solutions. The attribute weights in the three models can be precise or imprecise (i.e., characterized by six types of constraints). The IER approach is used to select the optimum software for product lifecycle management of a famous Chinese automobile manufacturing enterprise. 相似文献
3.
Supplier selection is a multi-criterion decision making problem under uncertain environments. Hence, it is reasonable to hand the problem in fuzzy sets theory (FST) and Dempster Shafer theory of evidence (DST). In this paper, a new MCDM methodology, using FST and DST, based on the main idea of the technique for order preference by similarity to an ideal solution (TOPSIS), is developed to deal with supplier selection problem. The basic probability assignments (BPA) can be determined by the distance to the ideal solution and the distance to the negative ideal solution. Dempster combination rule is used to combine all the criterion data to get the final scores of the alternatives in the systems. The final decision results can be drawn through the pignistic probability transformation. In traditional fuzzy TOPSIS method, the quantitative performance of criterion, such as crisp numbers, should be transformed into fuzzy numbers. The proposed method is more flexible due to the reason that the BPA can be determined without the transformation step in traditional fuzzy TOPSIS method. The performance of criterion can be represented as crisp number or fuzzy number according to the real situation in our proposed method. The numerical example about supplier selection is used to illustrate the efficiency of the proposed method. 相似文献
4.
This paper presents interval-valued fuzzy permutation (IVFP) methods for solving multiattribute decision making problems based on interval-valued fuzzy sets. First, we evaluate alternatives according to the achievement levels of attributes, which admits cardinal or ordinal representation. The relative importance of each attribute can also be measured by interval or scalar data. Next, we identify the concordance, midrange concordance, weak concordance, discordance, midrange discordance and weak discordance sets for each ordering. The proposed method consists of testing each possible ranking of the alternatives against all others. The evaluation value of each permutation can be computed either by cardinal weights or by solving programming problems. Then, we choose the permutation with the maximum evaluation value, and the optimal ranking order of alternatives can be obtained. An experimental analysis of IVFP rankings given cardinal and ordinal evaluations is conducted with discussions on consistency rates, contradiction rates, inversion rates, and average Spearman correlation coefficients. 相似文献
5.
The selection supplier problem has received a lot of attention from academics in recent years. Several models were developed in the literature, combining consolidated operations research and artificial intelligence methods and techniques. However, the tools presented in the literature neglected learning and adaptation, since this decision making process is approached as a static one rather than a highly dynamic process. Delays, lack of capacity, quality related issues are common examples of dynamic aspects that have a direct impact on long-term relationships with suppliers. This paper presents a novel method based on the integration of influence diagram and fuzzy logic to rank and evaluate suppliers. The model was developed to support managers in exploring the strengths and weaknesses of each alternative, to assist the setting of priorities between conflicting criteria, to study the sensitivity of the behavior of alternatives to changes in underlying decision situations, and finally to identify a preferred course of action. To be effective, the computational implementation of the method was embedded into an information system that includes several functionalities such as supply chain simulation and supplier’s databases. A case study in the biodiesel supply chain illustrates the effectiveness of the developed method. 相似文献
6.
Since fuzzy quality data are ubiquitous in the real world, under this fuzzy environment, the supplier selection and evaluation on the basis of the quality criterion is proposed in this paper. The Cpk index has been the most popular one used to evaluate the quality of supplier’s products. Using fuzzy data collected from q2 possible suppliers’ products, fuzzy estimates of q suppliers’ capability indices are obtained according to the form of resolution identity that is a well-known theorem in fuzzy sets theory. Certain optimization problems are formulated and solved to obtain α-level sets for the purpose of constructing the membership functions of fuzzy estimates of Cpki. These membership functions are sorted by using a fuzzy ranking method to choose the preferable suppliers. Finally, a numerical example is illustrated to present the possible application by incorporating fuzzy data into the quality-based supplier selection and evaluation. 相似文献
7.
Fatih Emre Boran Serkan Genç Mustafa Kurt Diyar Akay 《Expert systems with applications》2009,36(8):11363-11368
Supplier selection, the process of finding the right suppliers who are able to provide the buyer with the right quality products and/or services at the right price, at the right time and in the right quantities, is one of the most critical activities for establishing an effective supply chain. On the other hand, it is a hard problem since supplier selection is typically a multi criteria group decision-making problem involving several conflicting criteria on which decision maker’s knowledge is usually vague and imprecise. In this study, TOPSIS method combined with intuitionistic fuzzy set is proposed to select appropriate supplier in group decision making environment. Intuitionistic fuzzy weighted averaging (IFWA) operator is utilized to aggregate individual opinions of decision makers for rating the importance of criteria and alternatives. Finally, a numerical example for supplier selection is given to illustrate application of intuitionistic fuzzy TOPSIS method. 相似文献
8.
A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting 总被引:1,自引:0,他引:1
Ali Shemshadi Hossein Shirazi Mehran Toreihi M.J. Tarokh 《Expert systems with applications》2011,38(10):12160-12167
Recently, resolving the problem of evaluation and ranking the potential suppliers has become as a key strategic factor for business firms. With the development of intelligent and automated information systems in the information era, the need for more efficient decision making methods is growing. The VIKOR method was developed to solve multiple criteria decision making (MCDM) problems with conflicting and non-commensurable criteria assuming that compromising is acceptable to resolve conflicts. On the other side objective weights based on Shannon entropy concept could be used to regulate subjective weights assigned by decision makers or even taking into account the end-users’ opinions. In this paper, we treat supplier selection as a group multiple criteria decision making (GMCDM) problem and obtain decision makers’ opinions in the form of linguistic terms. Then, these linguistic terms are converted to trapezoidal fuzzy numbers. We extended the VIKOR method with a mechanism to extract and deploy objective weights based on Shannon entropy concept. The final result is obtained through next steps based on factors R, S and Q. A numerical example is proposed to illustrate an application of the proposed method. 相似文献
9.
Amy H.I. Lee He-Yau Kang Chang-Fu Hsu Hsiao-Chu Hung 《Expert systems with applications》2009,36(4):7917-7927
With growing worldwide awareness of environmental protection, green production has become an important issue for almost every manufacturer and will determine the sustainability of a manufacturer in the long term. A performance evaluation system for green suppliers thus is necessary to determine the suitability of suppliers to cooperate with the firm. While the works on the evaluation and/or selection of suppliers are abundant, those that concern environmental issues are rather limited. Therefore, in this study, a model for evaluating green suppliers is proposed. The Delphi method is applied first to differentiate the criteria for evaluating traditional suppliers and green suppliers. A hierarchy is constructed next to help evaluate the importance of the selected criteria and the performance of green suppliers. Since experts may not identify the importance of factors clearly, the results of questionnaires may be biased. To consider the vagueness of experts’ opinions, the fuzzy extended analytic hierarchy process is exploited. With the proposed model, manufacturers can have a better understanding of the capabilities that a green supplier must possess and can evaluate and select the most suitable green supplier for cooperation. 相似文献
10.
Gene selection is a significant preprocessing of the discriminant analysis of microarray data. The classical gene selection methods can be classified into three categories: the filters, the wrappers and the embedded methods. In this paper, a novel hybrid gene selection method (HGSM) is proposed by exploring both the mutual information criterion (filters) and leave-one-out-error criterion (wrappers) under the framework of an improved ant algorithm. Extensive experiments are conducted on three benchmark datasets and the results confirm the effectiveness and efficiency of HGSM. 相似文献
11.
《国际计算机数学杂志》2012,89(11):2233-2245
A data mining algorithm, such as Apriori, discovers a huge number of association rules (ARs) and therefore efficiently ranking all these rules is an important issue. This paper suggests a data envelopment analysis (DEA) method for ranking the discovered ARs using a maximum discrimination between the interestingness criteria defined for all ARs. It is shown that the proposed DEA model has a unique optimal solution which can be computed efficiently when the maximum discrimination between the criteria, the difference between DEA weights, is considered. The contribution of this study can be explained as follows: First, we show that using the conventional DEA model for ranking ARs may produce an invalid result because the weights corresponding to interestingness criteria would not discriminate between the criteria. This is investigated for a dataset consisting of 46 ARs with four criteria, namely support, confidence, itemset value and cross-selling. The paper also introduces the maximum discrimination between the weights of the criteria and obtains the optimal solution of the corresponding DEA model efficiently without the need of solving the related mathematical models. On the other hand, this model concludes less number of useful rule(s). A comparative analysis is then used to show the advantage of the proposed DEA method. 相似文献
12.
Traditionally, supplier selection should simultaneously take into account numerous heterogeneous criteria, and then is a tedious task for the purchasing decision makers. It becomes especially complicated when quantity discounts are considered at the same time. Under such manner, most studies often formulate such a problem as a Multi-Objective Linear Programming (MOLP) problem, and then scale it down to a Mixed Integer Programming (MIP) problem to handle the inherited multi-objectives simultaneously. However, this approach often neglects to consider scaling and subjective weighting issues. In order to ease the problem mentioned above and to obtain a more reasonable compromise solution for allocating order quantities among suppliers with their quantity discount rate offered, the Analytical Hierarchy Process (AHP) and fuzzy compromise programming are introduced in this study. An illustrated example is presented to demonstrate the proposed model and to illuminate two kinds of attitudes for decision makers. The information from the experiments can be utilized further to explain the suppliers’ possible improvement and to help create win–win policies. 相似文献
13.
Combining Bayesian Networks and Total Cost of Ownership method for supplier selection analysis 总被引:1,自引:0,他引:1
In this study, we analyze the supplier selection process by combining Bayesian Networks (BN) and Total Cost of Ownership (TCO) methods. The proposed approach aims to efficiently incorporate and exploit the buyer’s domain-specific information when the buyer has both limited and uncertain information regarding the supplier. This study examines uncertainty from a total cost perspective, with regards to causes of supplier performance and capability on buyer’s organization. The proposed approach is assessed and tested in automotive industry for tier-1 supplier for selecting its own suppliers. To efficiently facilitate expert opinions, we form factors to represent and explain various supplier selection criteria and to reduce complexity. The case study in automotive industry shows several advantages of the proposed method. A BN approach facilitates a more insightful evaluation and selection of alternatives given its semantics for decision making. The buyer can also make an accurate cost estimation that are specifically linked with suppliers’ performance. Both buyer and supplier have clear vision to reduce costs and to improve the relations. 相似文献
14.
Doraid Dalalah Mohammed Hayajneh Farhan Batieha 《Expert systems with applications》2011,38(7):8384-8391
This paper presents a hybrid fuzzy model for group Multi Criteria Decision Making (MCDM). A modified fuzzy DEMATEL model is presented to deal with the influential relationship between the evaluation criteria. The modified DEMATEL captures such relationship and divides the criteria into two groups, particularly, the cause group and the effect group. The cause group has an influence on the effect group where such influence is used to estimate the criteria weights. In addition, a modified TOPSIS model is proposed to evaluate the criteria against each alternative. Here, a fuzzy distance measure is used in which the distance from the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS) are calculated. The resulted distances were used to calculate the similarity to Ideal and Anti-ideal points. Later, an optimal membership degree (closeness coefficient) of each alternative is computed to estimate to which extent an alternative belongs to both FPIS and FNIS. The closer the degree of membership to FPIS and the farther from FNIS the more preferred the alternative. The membership degree is obtained by the optimization of a defined objective function that measures the degree to which an alternative is similar/dissimilar to the Ideal/Anti-Ideal solutions. The closeness coefficient is used to rank the alternatives. To better have a high contrast between the ranks of alternatives an optimization problem was introduced and solved to maximize the contrast.The presented hybrid model was applied on an industrial case study for the selection of cans supplier/suppliers at Nutridar Factory in Amman-Jordan to demonstrate the proposed model. Finally a sensitivity analysis is introduced to verify the resulting ranks of the available suppliers via testing different values of the used parameters. The sensitivity analysis has shown robust and valid results that are close to real preferences of the consulted experts. 相似文献
15.
《Expert systems with applications》2014,41(1):92-104
We consider the issue of supplier selection by using rule-based methodology. Supplier Selection (SS) is an important activity in Logistics and Supply Chain Management in today’s global market. It is one of major applications of Multiple Criteria Decision Analysis (MCDA) that concerns about preference-related decision information. The rule-based methodology is proven of its effectiveness in handling preference information and performs well in sorting or ranking alternatives. However, how to utilize them in SS still remains open for more studies. In this paper, we propose a novel Believable Rough Set Approach (BRSA). This approach performs the complete problem-solving procedures including (1) criteria analysis, (2) rough approximation, (3) decision rule induction, and (4) a scheme for rule application. Unlike other rule-based solutions that just extract certain information, the proposed solution additionally extracts valuable uncertain information for rule induction. Due to such mechanism, BRSA outperforms other solutions in evaluation of suppliers. A detailed empirical study is provided for demonstration of decision-making procedures and multiple comparisons with other proposals. 相似文献
16.
Feyzan Arikan 《Expert systems with applications》2013,40(3):947-952
In today’s severe competitive environment the selection of appropriate suppliers is a significantly important decision for effective supply chain management. Appropriate suppliers reduce purchasing costs, decrease production lead time, increase customer satisfaction and strengthen corporate competitiveness. In this study a multiple sourcing supplier selection problem is considered as a multi objective linear programming problem. Three objective functions are minimization of costs, maximization of quality and maximization of on-time delivery respectively. In order to solve the problem, a fuzzy mathematical model and a novel solution approach are proposed to satisfy the decision maker’s aspirations for fuzzy goals. The proposed approach can be efficiently used to obtain non-dominated solutions. A numerical example is given to illustrate how the approach is utilized. 相似文献
17.
Using data mining synergies for evaluating criteria at pre-qualification stage of supplier selection
Rajeev Jain A. R. Singh H. C. Yadav P. K. Mishra 《Journal of Intelligent Manufacturing》2014,25(1):165-175
A company must purchase a lot of diverse components and raw material from different upstream suppliers to manufacture or assemble its products. Under this situation the supplier selection has become a critical issue for the purchasing department.The selection of suppliers depends on number of criteria and the challenge is to optimize selection process based on critical criteria and select the best supplier(s). During supplier selection process initial screening of potential suppliers from a large set is vital and the determination of prospective supplier is largely dependent on the criteria chosen of such pre-qualification. In the literature, many judgments based methods are proposed and derived criteria selection from the opinion of either the customers or the experts. All these techniques use the knowledge and experience of the decision makers. These methods inherit certain degree of uncertainty due to complex supply chain structure. The extraction of hidden knowledge is one of the most important tools to address such uncertainty and data mining is one such concept to account for such uncertainty and it has been found applicable in many scenarios. The proposed research aims to introduce a data mining approach, to discover the hidden relationships among the supplier’s pre-qualification data with the overall supplier rating that have been derived after observation of previously executed work for a period of time. It provides an overview that how supplier’s initial strength influence its final work performance. 相似文献
18.
19.
Ranking decision making units (DMUs) is one of the most important applications of data envelopment analysis (DEA). In this paper, we exploit the power of individual appreciativeness in developing a methodology that combines cross-evaluation, preference voting and ordered weighted averaging (OWA). We show that each stage of the proposed methodology enhances discrimination among DMUs while offering more flexibility to the decision process. Our approach is illustrated through an example involving 15 baseball players. 相似文献
20.
Algorithms for feature selection in predictive data mining for classification problems attempt to select those features that are relevant, and are not redundant for the classification task. A relevant feature is defined as one which is highly correlated with the target function. One problem with the definition of feature relevance is that there is no universally accepted definition of what it means for a feature to be ‘highly correlated with the target function or highly correlated with the other features’. A new feature selection algorithm which incorporates domain specific definitions of high, medium and low correlations is proposed in this paper. The proposed algorithm conducts a heuristic search for the most relevant features for the prediction task. 相似文献