首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For medium-frequency range, currently no adequate and mature simulation methods exist. This paper discusses a two-dimensional (2D) coupled structure-acoustic problem by coupling the partition of unity method (PUM), for the solid domain, and, an improved meshless weighted least-square (IMWLS) method, for the fluid domain, which demonstrated that the coupled PUM-IMWLS method seems to be an excellent way to reach the medium-frequency accurately.  相似文献   

2.
The separation of computer aided design (CAD) modeling and finite element analysis (FEA) of heterogeneous objects makes it cumbersome for designers to exchange the data information. In this paper a systematic modeling and analysis for heterogeneous objects based on multi-color distance field was proposed. Firstly, the geometric model of an object was represented by the signed distance field; next, each grid was assigned with material property and material distance field which had the same resolution with geometric distance field was calculated according to material feature; the geometric and material distance fields were then unified, named as multi-color distance field. Then, through sampling the multi-color distance field, boundary and interior nodes were directly as nodes for meshless weighted least-square (MWLS) analysis. Using the moving least-squares approximation scheme as shape function, the MWLS analysis leads to a pure meshless analysis for heterogeneous objects. In the end, the effectiveness of the approach was illustrated by several numerical examples.  相似文献   

3.
Potential difficulties arise in connection with various physical and engineering problems in which the functions satisfy a given partial differential equation and particular boundary conditions. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, they usually cannot be solved with analytical solutions. The element-free Galerkin (EFG) method is a meshless method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by using the weighted orthogonal basis function to construct the MLS interpolants, we derive the formulae of an improved EFG (IEFG) method for two-dimensional potential problems. There are fewer coefficients in the improved MLS (IMLS) approximation than in the MLS approximation, and in the IEFG method fewer nodes are selected in the entire domain than in the conventional EFG method. Hence, the IEFG method should result in a higher computing speed.  相似文献   

4.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the moving least‐squares (MLS) approximation, we propose a new approximation method—the complex variable moving least‐squares (CVMLS) approximation. With the CVMLS approximation, the trial function of a two‐dimensional problem is formed with a one‐dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than in the trial function of the MLS approximation, and we can thus select fewer nodes in the meshless method that is formed from the CVMLS approximation than are required in the meshless method of the MLS approximation with no loss of precision. The meshless method that is derived from the CVMLS approximation also has a greater computational efficiency. From the CVMLS approximation, we propose a new meshless method for two‐dimensional elasticity problems—the complex variable meshless method (CVMM)—and the formulae of the CVMM for two‐dimensional elasticity problems are obtained. Compared with the conventional meshless method, the CVMM has a greater precision and computational efficiency. For the purposes of demonstration, some selected numerical examples are solved using the CVMM. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Combining a modified functional with the moving least‐squares (MLS) approximation, the hybrid boundary node method (Hybrid BNM) is a truly meshless, boundary‐only method. The method may have advantages from the meshless local boundary integral equation (MLBIE) method and also the boundary node method (BNM). In fact, the Hybrid BNN requires only the discrete nodes located on the surface of the domain. The Hybrid BNM has been applied to solve 2D potential problems. In this paper, the Hybrid BNM is extended to solve potential problems in three dimensions. Formulations of the Hybrid BNM for 3D potential problems and the MLS approximation on a generic surface are developed. A general computer code of the Hybrid BNM is implemented in C++. The main drawback of the ‘boundary layer effect’ in the Hybrid BNM in the 2D case is circumvented by an adaptive face integration scheme. The parameters that influence the performance of this method are studied through three different geometries and known analytical fields. Numerical results for the solution of the 3D Laplace's equation show that high convergence rates with mesh refinement and high accuracy are achievable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A modified meshless local Petrov–Galerkin (MLPG) method is presented for elasticity problems using the moving least squares (MLS) approximation. It is a truly meshless method because it does not need a mesh for the interpolation of the solution variables or for the integration of the energy. In this paper, a simple Heaviside test function is chosen to overcome the computationally expensive problems in the MLPG method. Essential boundary conditions are imposed by using a direct interpolation method based on the MLPG method establishes equations node by node. Numerical results in several examples show that the present method yielded very accurate solutions. And the sensitivity of the method to several parameters is also studied in this paper.  相似文献   

8.
Meshless Galerkin least-squares method   总被引:1,自引:0,他引:1  
Collocation method and Galerkin method have been dominant in the existing meshless methods. Galerkin-based meshless methods are computational intensive, whereas collocation-based meshless methods suffer from instability. A new efficient meshless method, meshless Galerkin lest-squares method (MGLS), is proposed in this paper to combine the advantages of Galerkin method and collocation method. The problem domain is divided into two subdomains, the interior domain and boundary domain. Galerkin method is applied in the boundary domain, whereas the least-squares method is applied in the interior domain.The proposed scheme elliminates the posibilities of spurious solutions as that in the least-square method if an incorrect boundary conditions are used. To investigate the accuracy and efficiency of the proposed method, a cantilevered beam and an infinite plate with a central circular hole are analyzed in detail and numerical results are compared with those obtained by Galerkin-based meshless method (GBMM), collocation-based meshless method (CBMM) and meshless weighted least squares method (MWLS). Numerical studies show that the accuracy of the proposed MGLS is much higher than that of CBMM and is close to, even better than, that of GBMM, while the computational cost is much less than that of GBMM.Acknowledgements The authors gratefully acknowledge the support of the National Natural Science Foundation of China with grant number 10172052.  相似文献   

9.
In this paper, an improved multi-domain model based on the hybrid boundary node method (Hybrid BNM) is proposed for mechanical analysis of 3D composites. The Hybrid BNM is a boundary type meshless method which based on the modified variational principle and the Moving Least Squares (MLS) approximation. The improved multi-domain model can reduce the total degrees of freedom (DOFs) compared with the conventional multi-domain solver. It is very suitable for the inclusion-based composites, especially for the composites when the inclusions are solid and totally embedded in the matrix domain. Numerical examples are presented to verify the improved multi-domain model and the results have shown the accuracy and efficiency of the improved model.  相似文献   

10.
The meshless local boundary integral equation (MLBIE) method with an efficient technique to deal with the time variable are presented in this article to analyze the transient heat conduction in continuously nonhomogeneous functionally graded materials (FGMs). In space, the method is based on the local boundary integral equations and the moving least squares (MLS) approximation of the temperature and heat flux. In time, again the MLS approximates the equivalent Volterra integral equation derived from the heat conduction problem. It means that, the MLS is used for approximation in both time and space domains, and we avoid using the finite difference discretization or Laplace transform methods to overcome the time variable. Finally the method leads to a single generalized Sylvester equation rather than some (many) linear systems of equations. The method is computationally attractive, which is shown in couple of numerical examples for a finite strip and a hollow cylinder with an exponential spatial variation of material parameters.  相似文献   

11.
This work presents a general and efficient way of computing both diffuse and full derivatives of shape functions for meshless methods based on moving least‐squares approximation (MLS) and interpolation. It is an extension of the recently introduced consistency approach based on Lagrange multipliers which provides a general framework for constrained MLS along with robust algorithms for the computation of shape functions and their diffuse derivatives. The particularity of the proposed algorithms is that they do not involve matrix inversion or linear system solving. The previous approach is limited to diffuse derivatives of the shape functions and not their full derivatives which are usually much more expensive to obtain. In the present paper we propose to efficiently compute the full derivatives by a new algorithm based on the formal differentiation of the previous one. In this way, we obtain a unified low‐cost consistent methodology for evaluating the shape functions and both their diffuse and full derivatives. In the second part of the paper we introduce explicit forms of MLS shape functions in 1D, 2D and 3D for an arbitrary number of nodes. These forms are especially useful for comparing finite element and MLS approximations. Finally we present a general architecture of an MLS program. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents a new implementation of the boundary node method (BNM) for numerical solution of Laplace's equation. By coupling the boundary integral equations and the moving least‐squares (MLS) approximation, the BNM is a boundary‐type meshless method. However, it still uses the standard elements for boundary integration and approximation of the geometry, thus loses the advantages of the meshless methods. In our implementation, here called the boundary face method, the boundary integration is performed on boundary faces, which are represented in parametric form exactly as the boundary representation data structure in solid modeling. The integrand quantities, such as the coordinates of Gauss integration points, Jacobian and out normal are calculated directly from the faces rather than from elements. In order to deal with thin structures, a mixed variable interpolation scheme of 1‐D MLS and Lagrange Polynomial for long and narrow faces. An adaptive integration scheme for nearly singular integrals has been developed. Numerical examples show that our implementation can provide much more accurate results than the BNM, and keep reasonable accuracy in some extreme cases, such as very irregular distribution of nodes and thin shells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.  相似文献   

14.
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in an FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is finite difference method (FDM), which is usually difficult to handle a complex problem domain, and also difficult to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection–diffusion equations (FADE), which is a typical FPDE The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong‐forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate the accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The Helmholtz equation always suffers the so-called ‘pollution effect’, which is directly related to the dispersion for high wavenumber. The element-free Galerkin method (EFGM) has been successfully applied to acoustic problems and significantly reduced the dispersion error. Unfortunately, it is computationally expensive. In this paper, a two-dimensional (2-D) dispersion analysis is performed on the meshless Galerkin least-square (MGLS) method. This method is based on the EFGM at the domain boundary and the least-square method in the interior. Numerical examples on an L-shaped cavity demonstrate that while retaining the accuracy of the EFGM, the computational cost can be significantly reduced.  相似文献   

16.
In this paper, a modified version of discrete least-squares meshless (DLSM) method is used to simulate free surface flows with moving boundaries. DLSM is a newly developed meshless approach in which a least-squares functional of the residuals of the governing differential equations and its boundary conditions at the nodal points is minimized with respect to the unknown nodal parameters. The meshless shape functions are also derived using the Moving Least Squares (MLS) method of function approximation. The method is, therefore, a truly meshless method in which no integration is required in the computations. Since the second order derivative of the MLS shape function are known to contain higher errors compared to the first derivative, a modified version of DLSM method referred to as corrected discrete least-squares meshless (corrected DLSM) is proposed in which the second order derivatives are evaluated more accurately and efficiently by combining the first order derivatives of MLS shape functions with a finite difference approximation of the second derivatives. The governing equations of fluid flow (Navier–Stokes) are solved by the proposed method using a two-step pressure projection method in a Lagrangian form. Three benchmark problems namely; dam break, underwater rigid landslide and Scott Russell wave generator problems are used to test the accuracy of the proposed approach. The results show that proposed corrected DLSM can be employed to simulate complex free surface flows more accurately.  相似文献   

17.
This paper presents a new implementation of the boundary node method (BNM) for 2D elasticity based on the parametric space. The BNM couples the boundary integral equations (BIE) with the moving least square (MLS) approximation, which retains the dimensionality advantage and the meshless attribute. However, the BNM is performed on an approximate geometry by MLS fitting and geometry errors are inevitable. In this paper, the BNM is implemented directly on the boundary representation (B-rep) data structure used in most CAD packages for geometry modeling, which named the boundary line method (BLM). The integration quantities, such as the coordinates of Gauss points, the outward normal and Jacobian are calculated directly from the lines represented in a parametric form which are the same as the real boundary, and thus no errors will be introduced. A new integration scheme has been developed to deal with weakly singular integrals easily. Numerical results presented in this paper show excellent accuracy and high convergence rate.  相似文献   

18.
A new meshless method for solving transient elastodynamic boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation (MLS), is proposed in this paper. The LBIE with the MLS is applied to both transient and steady‐state (Laplace transformed) elastodynamics. Applying the MLS approximation for spatially dependent terms in the first approach, the LBIEs are transformed into a system of ordinary differential equations for nodal unknowns. This system of ordinary differential equations is solved by the Houbolt finite difference scheme. In the second formulation, the time variable is eliminated by using the Laplace transformation. Unknown Laplace transforms of displacements and traction vectors are computed from the LBIEs with the MLS approximation. The time‐dependent values are obtained by the Durbin inversion technique. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper a numerical approach based on the truly meshless methods is proposed to deal with the second-order two-space-dimensional telegraph equation. In the meshless local weak–strong (MLWS) method, our aim is to remove the background quadrature domains for integration as much as possible, and yet to obtain stable and accurate solution. The MLWS method is designed to combine the advantage of local weak and strong forms to avoid their shortcomings. In this method, the local Petrov–Galerkin weak form is applied only to the nodes on the Neumann boundary of the domain of the problem. The meshless collocation method, based on the strong form equation is applied to the interior nodes and the nodes on the Dirichlet boundary. To solve the telegraph equation using the MLWS method, the conventional moving least squares (MLS) approximation is exploited in order to interpolate the solution of the equation. A time stepping scheme is employed to approximate the time derivative. Another solution is also given by the meshless local Petrov-Galerkin (MLPG) method. The validity and efficiency of the two proposed methods are investigated and verified through several examples.  相似文献   

20.
The meshless Shepard and least squares (MSLS) method and the meshless Shepard method are partition of unity based meshless interpolations which eliminate the problems by other meshless methods such as the difficulty in direct imposition of the essential boundary conditions. However, singular weight functions have to be used in both methods to enforce the approximation interpolatory, which leads to the loss of smoothness in approximation and locally oscillatory results. In this paper, an improved MSLS interpolation is developed by using dually defined nodal supports such that no singular weight function is required. The proposed interpolation satisfies the delta property at boundary nodes and the compatibility condition throughout the domain, and is capable of exactly reproducing the basis function. The computational cost of the present interpolation is much lower than the moving least-squares approximation which is probably the most widely used meshless interpolation at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号