首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Association Rule Mining is one of the important data mining activities and has received substantial attention in the literature. Association rule mining is a computationally and I/O intensive task. In this paper, we propose a solution approach for mining optimized fuzzy association rules of different orders. We also propose an approach to define membership functions for all the continuous attributes in a database by using clustering techniques. Although single objective genetic algorithms are used extensively, they degenerate the solution. In our approach, extraction and optimization of fuzzy association rules are done together using multi-objective genetic algorithm by considering the objectives such as fuzzy support, fuzzy confidence and rule length. The effectiveness of the proposed approach is tested using computer activity dataset to analyze the performance of a multi processor system and network audit data to detect anomaly based intrusions. Experiments show that the proposed method is efficient in many scenarios.
V. S. AnanthanarayanaEmail:
  相似文献   

2.
In designing phase of systems, design parameters such as component reliabilities and cost are normally under uncertainties. This paper presents a methodology for solving the multi-objective reliability optimization model in which parameters are considered as imprecise in terms of triangular interval data. The uncertain multi-objective optimization model is converted into deterministic multi-objective model including left, center and right interval functions. A conflicting nature between the objectives is resolved with the help of intuitionistic fuzzy programming technique by considering linear as well as the nonlinear degree of membership and non-membership functions. The resultants max–min problem has been solved with particle swarm optimization (PSO) and compared their results with genetic algorithm (GA). Finally, a numerical instance is presented to show the performance of the proposed approach.  相似文献   

3.
In this paper, an orthogonal multi-objective evolutionary algorithm (OMOEA) is proposed for multi-objective optimization problems (MOPs) with constraints. Firstly, these constraints are taken into account when determining Pareto dominance. As a result, a strict partial-ordered relation is obtained, and feasibility is not considered later in the selection process. Then, the orthogonal design and the statistical optimal method are generalized to MOPs, and a new type of multi-objective evolutionary algorithm (MOEA) is constructed. In this framework, an original niche evolves first, and splits into a group of sub-niches. Then every sub-niche repeats the above process. Due to the uniformity of the search, the optimality of the statistics, and the exponential increase of the splitting frequency of the niches, OMOEA uses a deterministic search without blindness or stochasticity. It can soon yield a large set of solutions which converges to the Pareto-optimal set with high precision and uniform distribution. We take six test problems designed by Deb, Zitzler et al., and an engineering problem (W) with constraints provided by Ray et al. to test the new technique. The numerical experiments show that our algorithm is superior to other MOGAS and MOEAs, such as FFGA, NSGAII, SPEA2, and so on, in terms of the precision, quantity and distribution of solutions. Notably, for the engineering problem W, it finds the Pareto-optimal set, which was previously unknown.  相似文献   

4.
Most of the existing multi-objective genetic algorithms were developed for unconstrained problems, even though most real-world problems are constrained. Based on the boundary simulation method and trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-objective optimization problems are examined, and we compare the test results with those of the well-known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical experiments indicate that the proposed method can clearly simulate the Pareto front for the problems under consideration.  相似文献   

5.
We consider nonlinear optimization problems constrained by a system of fuzzy relation equations. The solution set of the fuzzy relation equations being nonconvex, in general, conventional nonlinear programming methods are not practical. Here, we propose a genetic algorithm with max-product composition to obtain a near optimal solution for convex or nonconvex solution set. Test problems are constructed to evaluate the performance of the proposed algorithm showing alternative solutions obtained by our proposed model.  相似文献   

6.
Entropy-based multi-objective genetic algorithm for design optimization   总被引:4,自引:0,他引:4  
Obtaining a fullest possible representation of solutions to a multiobjective optimization problem has been a major concern in Multi-Objective Genetic Algorithms (MOGAs). This is because a MOGA, due to its very nature, can only produce a discrete representation of Pareto solutions to a multiobjective optimization problem that usually tend to group into clusters. This paper presents a new MOGA, one that aims at obtaining the Pareto solutions with maximum possible coverage and uniformity along the Pareto frontier. The new method, called an Entropy-based MOGA (or E-MOGA), is based on an application of concepts from the statistical theory of gases to a baseline MOGA. Two demonstration examples, the design of a two-bar truss and a speed reducer, are used to demonstrate the effectiveness of E-MOGA in comparison to the baseline MOGA.  相似文献   

7.
为了保持所求得的约束多目标优化问题Pareto最优解的适应度与多样性,在NSGA-Ⅱ基础上提出了一种用于求解有约束的多目标优化问题的热力学遗传算法.结合热力学中自由能与熵的概念,利用热力学中熵与能量的竞争来保持种群的适应度与多样性的平衡,设计了热力学算子.根据非支配排序Pareto分层结构建立分层小生境来改进选择算子,弥补了选择算子不足.实验结果表明:该算法不仅得到的解在空间分布均匀,收敛性好,同时解集具有较广的分布空间.  相似文献   

8.
This research is based on a new hybrid approach, which deals with the improvement of shape optimization process. The objective is to contribute to the development of more efficient shape optimization approaches in an integrated optimal topology and shape optimization area with the help of genetic algorithms and robustness issues. An improved genetic algorithm is introduced to solve multi-objective shape design optimization problems. The specific issue of this research is to overcome the limitations caused by larger population of solutions in the pure multi-objective genetic algorithm. The combination of genetic algorithm with robust parameter design through a smaller population of individuals results in a solution that leads to better parameter values for design optimization problems. The effectiveness of the proposed hybrid approach is illustrated and evaluated with test problems taken from literature. It is also shown that the proposed approach can be used as first stage in other multi-objective genetic algorithms to enhance the performance of genetic algorithms. Finally, the shape optimization of a vehicle component is presented to illustrate how the present approach can be applied for solving multi-objective shape design optimization problems.  相似文献   

9.
This paper presents an interval algorithm for solving multi-objective optimization problems. Similar to other interval optimization techniques, [see Hansen and Walster (2004)], the interval algorithm presented here is guaranteed to capture all solutions, namely all points on the Pareto front. This algorithm is a hybrid method consisting of local gradient-based and global direct comparison components. A series of example problems covering convex, nonconvex, and multimodal Pareto fronts is used to demonstrate the method.  相似文献   

10.
In this paper, a multi-objective variant of the vibrating particles system (MOVPS) is introduced. The new algorithm uses an external archive to keep the non-dominated solutions. Besides, the...  相似文献   

11.
12.
Based on the simulated annealing strategy and immunodominance in the artificial immune system, a simulated annealing-based immunodominance algorithm (SAIA) for multi-objective optimization (MOO) is proposed in this paper. In SAIA, all immunodominant antibodies are divided into two classes: the active antibodies and the hibernate antibodies at each temperature. Clonal proliferation and recombination are employed to enhance local search on those active antibodies while the hibernate antibodies have no function, but they could become active during the following temperature. Thus, all antibodies in the search space can be exploited effectively and sufficiently. Simulated annealing-based adaptive hypermutation, population pruning, and simulated annealing selection are proposed in SAIA to evolve and obtain a set of antibodies as the trade-off solutions. Complexity analysis of SAIA is also provided. The performance comparison of SAIA with some state-of-the-art MOO algorithms in solving 14 well-known multi-objective optimization problems (MOPs) including four many objectives test problems and twelve multi-objective 0/1 knapsack problems shows that SAIA is superior in converging to approximate Pareto front with a standout distribution.  相似文献   

13.
This work presents a new approach for interval-based uncertainty analysis. The proposed approach integrates a local search strategy as the worst-case-scenario technique of anti-optimization with a constrained multi-objective genetic algorithm. Anti-optimization is a term for an approach to safety factors in engineering structures which is described as pessimistic and searching for least favorable responses, in combination with optimization techniques but in contrast to probabilistic approaches. The algorithm is applied and evaluated to be efficient and effective in producing good results via target matching problems: a simulated topology and shape optimization problem where a ‘target’ geometry set is predefined as the Pareto optimal solution and a constrained multiobjective optimization problem formulated such that the design solutions will evolve and converge towards the target geometry set.  相似文献   

14.
Recovery of used products has become increasingly important recently due to economic reasons and growing environmental or legislative concern. Product recovery, which comprises reuse, remanufacturing and materials recycling, requires an efficient reverse logistic network. One of the main characteristics of reverse logistics network problem is uncertainty that further amplifies the complexity of the problem. The degree of uncertainty in terms of the capacities, demands and quantity of products exists in reverse logistics parameters. With consideration of the factors noted above, this paper proposes a probabilistic mixed integer linear programming model for the design of a reverse logistics network. This probabilistic model is first converted into an equivalent deterministic model. In this paper we proposed multi-product, multi-stage reverse logistics network problem for the return products to determine not only the subsets of disassembly centers and processing centers to be opened, but also the transportation strategy that will satisfy demand imposed by manufacturing centers and recycling centers with minimum fixed opening cost and total shipping cost. Then, we propose priority based genetic algorithm to find reverse logistics network to satisfy the demand imposed by manufacturing centers and recycling centers with minimum total cost under uncertainty condition. Finally, we apply the proposed model to a numerical example.  相似文献   

15.
The problem of constructing an adequate and parsimonious neural network topology for modeling non-linear dynamic system is studied and investigated. Neural networks have been shown to perform function approximation and represent dynamic systems. The network structures are usually guessed or selected in accordance with the designer’s prior knowledge. However, the multiplicity of the model parameters makes it troublesome to get an optimum structure. In this paper, an alternative algorithm based on a multi-objective optimization algorithm is proposed. The developed neural network model should fulfil two criteria or objectives namely good predictive accuracy and minimum model structure. The result shows that the proposed algorithm is able to identify simulated examples correctly, and identifies the adequate model for real process data based on a set of solutions called the Pareto optimal set, from which the best network can be selected.  相似文献   

16.
Uncertain variables are used to describe the phenomenon where uncertainty appears in a complex system. For modeling the multi-objective decision-making problems with uncertain parameters, a class of uncertain optimization is suggested for the decision systems in Liu and Chen (2013), http://orsc.edu.cn/online/131020 which is called the uncertain multi-objective programming. In order to solve the proposed uncertain multi-objective programming, an interactive uncertain satisficing approach involving the decision-maker’s flexible demands is proposed in this paper. It makes an improvement in contrast to the noninteractive methods. Finally, a numerical example about the capital budget problem is given to illustrate the effectiveness of the proposed model and the relevant solving approach.  相似文献   

17.
Evolutionary multi-objective optimization algorithms are generally employed to generate Pareto optimal solutions by exploring the search space. To enhance the performance, exploration by global search can be complemented with exploitation by combining it with local search. In this paper, we address the issues in integrating local search with global search such as: how to select individuals for local search; how deep the local search is performed; how to combine multiple objectives into single objective for local search. We introduce a Preferential Local Search mechanism to fine tune the global optimal solutions further and an adaptive weight mechanism for combining multi-objectives together. These ideas have been integrated into NSGA-II to arrive at a new memetic algorithm for solving multi-objective optimization problems. The proposed algorithm has been applied on a set of constrained and unconstrained multi-objective benchmark test suite. The performance was analyzed by computing different metrics such as Generational distance, Spread, Max spread, and HyperVolume Ratio for the test suite functions. Statistical test applied on the results obtained suggests that the proposed algorithm outperforms the state-of-art multi-objective algorithms like NSGA-II and SPEA2. To study the performance of our algorithm on a real-world application, Economic Emission Load Dispatch was also taken up for validation. The performance was studied with the help of measures such as Hypervolume and Set Coverage Metrics. Experimental results substantiate that our algorithm has the capability to solve real-world problems like Economic Emission Load Dispatch and is able to produce better solutions, when compared with NSGA-II, SPEA2, and traditional memetic algorithms with fixed local search steps.  相似文献   

18.
In this paper, by considering the experts' fuzzy understanding of the nature of the parameters in the problem-formulation process, multiobjective nonconvex nonlinear programming problems with fuzzy numbers are formulated and an interactive fuzzy satisficing method through coevolutionary genetic algorithms is presented. Using the alpha-level sets of fuzzy numbers, the corresponding nonfuzzy alpha-programming problem is introduced. After determining the fuzzy goals of the decision maker, if the decision maker specifies the degree alpha and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the augmented minimax problems for which the coevolutionary genetic algorithm, called GENOCOP III, is applicable. In order to overcome the drawbacks of GENOCOP III, the revised GENOCOP III is proposed by introducing a method for generating an initial feasible point and a bisection method for generating a new feasible point efficiently. Then an interactive fuzzy satisficing method for deriving a satisficing solution for the decision maker efficiently from an extended Pareto optimal solution set is presented together with an illustrative numerical example.  相似文献   

19.
In most of the real world design or decision making problems involving reliability optimization, there are simultaneous optimization of multiple objectives such as the maximization of system reliability and the minimization of system cost, weight and volume. In this paper, our goal is to solve the constrained multi-objective reliability optimization problem of a system with interval valued reliability of each component by maximizing the system reliability and minimizing the system cost under several constraints. For this purpose, four different multi-objective optimization problems have been formulated with the help of interval mathematics and our newly proposed order relations of interval valued numbers. Then these optimization problems have been solved by advanced genetic algorithm and the concept of Pareto optimality. Finally, to illustrate and also to compare the results, a numerical example has been solved.  相似文献   

20.
基于混沌的多目标粒子群优化算法   总被引:1,自引:0,他引:1  
针对多目标优化问题,提出了一种改进的粒子群算法.该算法为了寻找新解,引入了混沌搜索技术,同时采用了一种新的方法--拥挤距离法定义解的适应度.并采取了精英保留策略,在提高非劣解集多样性的同时,使解集更加趋近于Pareto集.最后,把算法应用到4个典型的多目标测试函数.数值结果表明,该算法能够有效的收敛到Pareto非劣最优目标域,并沿着Pareto非劣目标域有很好的分散性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号