首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The scheduling in grids is known to be a NP-hard problem. The distributed deployment of nodes, their heterogeneity and their fluctuations in terms of workload and availability make the design of an effective scheduling algorithm a very complex issue. The scientific literature has proposed several heuristics able to tackle this kind of optimization problem using techniques and strategies inspired by nature. The algorithms belonging to ant colony optimization (ACO) paradigm represent an example of these techniques: each one of these algorithms uses strategies inspired by the self-organization ability of real ants for building effective grid schedulers. In this paper, the authors propose an on line, non-clairvoyant, distributed scheduling solution for multi-broker grid based on the alienated ant algorithm (AAA), a new ACO inspired technique exploiting a “non natural” behavior of ants and an inverse interpretation of pheromone trails. The paper introduces the proposed algorithm, explains the differences with other classical ACO approaches, and compares AAA with two different algorithms. The results of simulations show that the AAA guarantees good performance in terms of makespan, average queue waiting time and load balancing capability.  相似文献   

2.
Ant colony optimization   总被引:11,自引:0,他引:11  
Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization. Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species. These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony. Ant colony optimization exploits a similar mechanism for solving optimization problems. From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available. Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO. The goal of this article is to introduce ant colony optimization and to survey its most notable applications  相似文献   

3.
A new approach for solving permutation scheduling problems with ant colony optimization (ACO) is proposed in this paper. The approach assumes that no precedence constraints between the jobs have to be fulfilled. It is tested with an ACO algorithm for the single-machine total weighted deviation problem. In the new approach the ants allocate the places in the schedule not sequentially, as in the standard approach, but in random order. This leads to a better utilization of the pheromone information. It is shown by experiments that adequate combinations between the standard approach which can profit from list scheduling heuristics and the new approach perform particularly well.  相似文献   

4.
This paper presents a novel two-stage hybrid swarm intelligence optimization algorithm called GA–PSO–ACO algorithm that combines the evolution ideas of the genetic algorithms, particle swarm optimization and ant colony optimization based on the compensation for solving the traveling salesman problem. In the proposed hybrid algorithm, the whole process is divided into two stages. In the first stage, we make use of the randomicity, rapidity and wholeness of the genetic algorithms and particle swarm optimization to obtain a series of sub-optimal solutions (rough searching) to adjust the initial allocation of pheromone in the ACO. In the second stage, we make use of these advantages of the parallel, positive feedback and high accuracy of solution to implement solving of whole problem (detailed searching). To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems from TSPLIB are tested to demonstrate the potential of the proposed two-stage hybrid swarm intelligence optimization algorithm. The simulation examples demonstrate that the GA–PSO–ACO algorithm can greatly improve the computing efficiency for solving the TSP and outperforms the Tabu Search, genetic algorithms, particle swarm optimization, ant colony optimization, PS–ACO and other methods in solution quality. And the experimental results demonstrate that convergence is faster and better when the scale of TSP increases.  相似文献   

5.
Ant colony optimization (ACO) is a relatively new random heuristic approach for solving optimization problems. The main application of the ACO algorithm lies in the field of combinatorial optimization, and the traveling salesman problem (TSP) is the first benchmark problem to which the ACO algorithm has been applied. However, relatively few results on the runtime analysis of the ACO on the TSP are available. This paper presents the first rigorous analysis of a simple ACO algorithm called (1 + 1) MMAA (Max-Min ant algorithm) on the TSP. The expected runtime bounds for (1 + 1) MMAA on two TSP instances of complete and non-complete graphs are obtained. The influence of the parameters controlling the relative importance of pheromone trail versus visibility is also analyzed, and their choice is shown to have an impact on the expected runtime.  相似文献   

6.
Population declining ant colony optimization (PDACO) algorithm is proposed and applied to the traveling salesman problem (TSP) and multiuser detection in this paper. Ant colony optimization (ACO) algorithms have already successfully been used in combinatorial optimization, however, as the pheromone accumulates, we may not get a global optimum because it stops searching early. PDACO can enlarge searching range through increasing the initial population of the ant colony, and the population declines in successive iterations. So, the performance of PDACO is superior with the same computational complexity. PDACO is applied to TSP and multiuser detection. Via computer simulations it is shown that PDACO has better performance in solving these two problems than ACO algorithms.  相似文献   

7.
基于粒子群优化的蚁群算法在TSP中的应用   总被引:2,自引:0,他引:2  
柴宝杰  刘大为 《计算机仿真》2009,26(8):89-91,136
结合粒子群算法的问题,提出用混合蚁群算法来求解著名的旅行商问题.问题的核心是应用粒子群算法对蚁群算法的控制参数:启发式因子、信息素挥发系数、随机性选择阈值进行优化,以及运用蚁群系统算法寻找最短路径.新算法对于蚂蚁算法中的参数调整大大减低,减少了大量盲目的实验,力求在开发最优解和探究搜索空间上找到平衡点.对旅行商问题的仿真实验表明,新算法的优化质量和效率都优于传统蚁群算法和遗传算法,接近理论最佳值.新算法也可推广用于其他NP问题的求解.  相似文献   

8.
基于Spark的蚁群优化算法   总被引:2,自引:0,他引:2  
为应对大数据时代中组合优化问题的求解,基于云计算框架Spark,借助其基于内存、分布式的特定,提出一种并行蚁群优化算法。其思路是通过将蚂蚁构造为弹性分布式数据集,由此给出相应的一系列转换算子,实现了蚂蚁构造解过程的并行化。通过在旅行商问题(TSP)求解的仿真实验结果说明了所提出的并行算法的可行性;并在同等实验环境下对比基于MapReduce的蚁群优化算法,优化速度提升达10倍以上。  相似文献   

9.
Ant colony optimization for resource-constrained project scheduling   总被引:8,自引:0,他引:8  
An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants during the run of the algorithm, and the option that an elitist ant forgets the best-found solution are studied. We tested the ACO algorithm on a set of large benchmark problems from the Project Scheduling Library. Compared to several other heuristics for the RCPSP, including genetic algorithms, simulated annealing, tabu search, and different sampling methods, our algorithm performed best on average. For nearly one-third of all benchmark problems, which were not known to be solved optimally before, the algorithm was able to find new best solutions  相似文献   

10.
高健  顾垚江 《测控技术》2019,38(3):11-15
针对蚁群算法在求解旅行商问题时收敛时间长,且易陷入局部最优状态的缺陷,提出一种基于拥挤度的动态信息素蚁群优化策略。该算法引入静态拥挤度和动态拥挤度算子,主动提前预防停滞现象。将拥挤度与状态转移规则相结合,使蚁群状态实时跟随路径搜索情况而改变,提高蚁群自适应能力。针对蚁群路径搜索情况,加入邻域搜索优化规则,缩小搜索区域,结合2-opt局部优化策略,加快蚁群收敛速度。仿真结果表明,本算法既有较高的搜索效率又有较强的全局搜索能力。对比其他优化算法,无论是求解质量、稳定性还是收敛速度都能达到令人满意的效果。  相似文献   

11.
基于蚁群算法的离散救援问题出救点选址研究   总被引:1,自引:0,他引:1  
为解决应急物流中的出救点选址问题,建立了相应数学模型,引入蚁群算法解决问题。多数应急物流可以归为点对点的支援问题,出救点的设置应该在保证出救有效的条件下使出救点最少、救援时间最短,属于双层规划问题。双层规划问题是NP难题,可以应用蚁群算法解决。出救点选址问题在蚁群算法中可以视为蚁群的聚类,通过对信息素衰减及相邻蚂蚁的吸引作为启发因子,可以得到蚁群的聚类效果。实验结果表明,基于蚁群算法的选址问题解决方案能获得理想的选址效果,收敛速度较快。  相似文献   

12.
为提高传统蚁群算法在解决旅行商问题时的优化效果,提出了一种引入动态分化和邻域诱导机制的双蚁群优化算法。该算法首先引入混沌随机策略,在算法初始化阶段改变原始的贪心策略,使初始信息素混沌分布,以保持种群的多样性,从而提高解的精度;其次,将蚁群分为孤立蚁群与正常蚁群,两组蚂蚁分别在当前最优路径与离群路径附近搜索;在种群间采取诱导机制,正常蚁负责搜索最优路径,孤立蚁混沌随机释放信息素,将正常蚁群诱导至新的路径邻域,从而有效地平衡收敛速度与解的多样性之间的矛盾。通过对不同规模的旅行商问题仿真结果的比较,验证了所提算法的有效性。  相似文献   

13.
A new kind of ant colony optimization (ACO) algorithm is proposed that is suitable for an implementation in hardware. The new algorithm – called Counter-based ACO – allows to systolically pipe artificial ants through a grid of processing cells. Various features of this algorithm have been designed so that it can be mapped easily to field-programmable gate arrays (FPGAs). Examples are a new encoding of pheromone information and a new method to define the decision sequence of ants. Experimental results that are based on simulations for the traveling salesperson problem and the quadratic assignment problem are presented to evaluate the proposed techniques.  相似文献   

14.
基于混合信息素递减的蚁群算法   总被引:2,自引:1,他引:1       下载免费PDF全文
根据蚁群算法信息素更新的特性,提出了求解旅行商问题的混合信息素递减的蚁群算法。把基本蚁群的三种不同的信息素更新方式混合在一起,同时提出了信息素递减更新的方法。新的更新方式避免了蚂蚁在寻找最优解的过程中,由于禁忌表元素的逐渐增加而限制蚂蚁巡游路径选择的缺点,减少了巡游后期信息素对于后继蚂蚁的影响,提高了后继蚂蚁的巡游质量。仿真实验表明了该混合算法的有效性。  相似文献   

15.
An ant colony optimization (ACO) approach for the satellite control resource scheduling problem is presented. Based on the observation that the solution space of the problem is sparse, this ACO approach is combined with a guidance solution based pheromone updating method to avoid trapping in local optima. The basic idea of this method is to change the distribution of pheromone trails by updating them with a guidance solution once the algorithm stagnates. We compare the proposed algorithm with several other heuristics. The experimental results demonstrate that our approach possesses strong competitive advantage in exploring global best solutions.  相似文献   

16.
针对最大最小蚂蚁系统(MMAS)容易导致算法快速陷入局部最优的问题,提出一种基于可变天气因素的MMAS改进算法(variable weather MAX-MIN ant system,VW-MMAS)。通过由天气变化影响信息素的变化来改善MMAS的寻优过程,具体引入以下机制:在信息素挥发机制方面,参考天气变化因素对蚂蚁觅食的影响,设置信息素挥发系数和蚁群数量;在算法陷入局部最优时,综合考虑TSP问题中城市间的距离,增强不是最优路径的信息素,扩大蚂蚁的搜索范围。应用该算法解决TSP问题,将仿真结果与其它算法进行比较,验证了该算法的有效性,提高了解的质量。  相似文献   

17.
一种障碍环境下机器人路径规划的蚁群粒子群算法   总被引:5,自引:3,他引:5  
针对机器人在障碍环境下寻找最优路径问题, 提出了一种障碍环境下机器人路径规划的蚁群粒子群算法.该方法有效地结合了粒子群算法和蚁群算法的优点, 采用栅格法进行环境建模, 利用粒子群算法的快速简洁等特点得到蚁群算法初始信息素分布, 以减少迭代次数, 加快算法的收敛速度; 同时利用蚁群算法之间的可并行性, 采用分布式技术实现蚂蚁之间的并行搜索, 求解精度高等优点, 求精确解. 仿真实验结果证明了该方法的有效性, 是机器人路径规划的一种较好的方法.  相似文献   

18.
Ants can solve constraint satisfaction problems   总被引:4,自引:0,他引:4  
We describe a novel incomplete approach for solving constraint satisfaction problems (CSPs) based on the ant colony optimization (ACO) metaheuristic. The idea is to use artificial ants to keep track of promising areas of the search space by laying trails of pheromone. This pheromone information is used to guide the search, as a heuristic for choosing values to be assigned to variables. We first describe the basic ACO algorithm for solving CSPs and we show how it can be improved by combining it with local search techniques. Then, we introduce a preprocessing step, the goal of which is to favor a larger exploration of the search space at a lower cost, and we show that it allows ants to find better solutions faster. Finally, we evaluate our approach on random binary problems  相似文献   

19.
针对元件的抓取路径规划问题,提出一种以最小化时间为目的,结合蚁群算法和禁忌搜索算法的混合优化算法。首先,将基于机器视觉抓取元件的问题确定为有约束的旅行商问题(TSP);然后,分析了元件大小和抓取放置过程对于路径规划的综合影响,对路径选择概率和禁忌域进行了适应性改进;其次,一方面引入了2-opt局部优化以及信息素惩罚、奖励机制以改善蚂蚁的搜索能力,另一方面对信息挥发因子作适应性改进以提高蚂蚁的自适应能力;最后,针对基本算法和改进的混合优化算法,仿真实验和平台实验分别进行了性能指标和抓取时间的对比分析。实验结果表明,仿真环境下,与蚁群优化(ACO)算法和禁忌搜索(TS)算法相比,混合优化算法的平均迭代次数降低了约50%,且其他性能较为优越,平台测试的抓取用时测试结果也说明了混合优化算法较随机结果和基本算法的优越性,可以快速完成元件抓取任务。  相似文献   

20.
随着社会信息化程度的不断提高,各种形式的数据急剧膨胀.HDFS成为解决海量数据存储问题的一个分布式文件系统,而副本技术是云存储系统的关键.提出了一种基于初始信息素筛选的蚁群优化算法(InitPh_ACO)的副本选择策略,通过将遗传算法(GA)与蚁群优化算法(ACO)算法相结合,将它们进行动态衔接.提出基于初始信息素筛选的ACO算法,既克服了ACO算法初始搜索速度慢,又充分利用GA的快速随机全局搜索能力.利用云计算仿真工具CloudSim来验证此策略的效果,结果表明:InitPh_ACO策略在作业执行时间、副本读取响应时间和副本负载均衡性三个方面的性能均优于基于ACO算法的副本选择策略和基于GA的副本选择策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号