首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protective coatings for carbon bonded carbon fibre composites   总被引:1,自引:0,他引:1  
Carbon bonded carbon fibre composites (CBCF) were modified by direct reaction with molten silicon in order to obtain a silicon carbide layer on the composite surface. Subsequently, the Si-infiltrated CBCF material was coated with a silica-based glass containing yttria and alumina by means of a slurry-dipping technique. On heat treatment the glass yielded a glass-ceramic layer thus giving a multi-layered oxidation and erosion protection system. The microstructural characterisation of the coating was conducted by standard microscopy techniques and by X-ray diffraction. The controlled crystallization of the glass-produced cristobalite, yttrium silicate (Y2Si2O7, keiviite, β-form) and mullite as main crystalline phases. These are excellent ceramic materials for oxidation and erosion protection of SiC-coated carbon-based composites since their coefficients of thermal expansion (CTE) closely match that of SiC. The possibility of healing (closure) of micro cracks by a thermal treatment at 1375 °C, thus exploiting the viscous flow of the residual glass in the glass-ceramic, was explored in order to extend the service life of the protection system.  相似文献   

2.
《Ceramics International》2022,48(11):14935-14958
Carbon-bonded carbon fiber (CBCF) composites are considered as one of the most promising candidates in thermal insulation applications owing to their lightweight, low thermal conductivity, and high temperature resistance. Nevertheless, it is frustrating that CBCF composites exhibit inferior mechanical properties and oxidation resistance, which remains a significant challenge for their application. Matrix modification and coating technology have been proven to be effective methods to address these problems. In this paper, the preparation methods and performance of CBCF are firstly reviewed. Then, the preparation and performance of modified and coated CBCF composites are introduced in detail. Finally, the contents of this article are concluded and the outlooks for future research directions are proposed.  相似文献   

3.
Carbon-bonded carbon fiber (CBCF) composites are promising lightweight and high efficient thermal insulators to be applied in aerospace area, but their practical applications are usually restricted by the low mechanical performance and poor oxidation resistance. To overcome these drawbacks, many efforts have been made in the fabrication of ceramic coated CBCF composites. However, the densities of these modified composites are usually very high, which would result in the reduction in their thermal insulation performance. Herein, we prepared a CBCF composite with SiC nanowires enhanced interfibrous junctions and SiOC ceramic coated carbon fibers (SiCNWs-SiOC-CBCF). Similar to CBCF, the SiCNWs-SiOC-CBCF exhibits a low density of 0.35 g/cm3 and an anisotropic and highly porous architecture. The SiCNWs-SiOC-CBCF possesses a compressive strength of 3.8 MPa and a compression modulus of 195.7 MPa in the X (or Y) direction, ~26.7% and 150% higher than those of CBCF respectively. It can also suffer from an isothermal treatment in air at 900°C for 120 minutes. The combination of these properties makes the SiCNWs-SiOC-CBCF a good candidate for thermal insulator to be applied in extreme conditions.  相似文献   

4.
A hot-pressing reactive sintering (HPRS) technique was explored to prepare SiC coating for protecting carbon/carbon (C/C) composites against oxidation. The microstructures of the coatings were analyzed by X-ray diffraction and scanning electron microscopy. The results show that, SiC coating obtained by HPRS has a dense and crack-free structure, and the coated C/C lost mass by only 1.84 wt.% after thermal cycles between 1773 K and room temperature for 15 times. The flexural strength of the HPRS-SiC coated C/C is up to 140 MPa, higher than those of the bare C/C and the C/C with a SiC coating by pressure-less reactive sintering. The fracture mode of the C/C composites changes from a pseudo-plastic behavior to a brittle one after being coated with a HPRS-SiC coating.  相似文献   

5.
The catalytic effect of boric acid on the graphitization and surface structure of polyacrylonitrile-based carbon fibers was investigated by dipping fibers in boric acid before heating at 2500 °C. The thermal conductivity of carbon/carbon composites produced from the modified carbon performs by chemical vapor infiltration was also studied. The results show that the treatment by boric acid has a catalytic-graphitization effect on the fibers that increases the crystallinity and changes the surface state of carbon fibers during high temperature treatment. The modified carbon fibers induce the deposition of pyrocarbon with high crystallinity and an obvious transition interface between the carbon fiber and pyrocarbon during chemical vapor infiltration. By changing the microscopic structure of the carbon fibers, the interface bonding between fibers and pyrocarbon is improved and the microstructure of pyrocarbon is regulated. The thermal conductivity of the carbon/carbon composites is therefore improved, especially that in the direction perpendicular to fiber axis.  相似文献   

6.
A novel super-elastic carbon fibre composite was prepared by impregnating carbon aerogel into carbon-bonded carbon fibre (CBCF) through vacuum impregnation. The compressive strength of CBCF-CA was increased to 1.24?MPa in the z-direction, which was 6-fold more than that of neat CBCF. The CBCF-CA spontaneously recovered its size and shape without significant deformation when the pressure was released. The thermal conductivity of CBCF-CA was 0.246?W?(m·K)?1 at 1400°C in the z-direction, which is lower than that of CBCF (0.341?W?(m·K)?1). The average electromagnetic interference shielding e?ectiveness of CBCF-CA composites in the range of 12.4–18?GHz was higher than 40?dB, suggesting an absorption-dominant shielding feature. The CBCF-CA composite will be a new multifunctional material due to its low density, low thermal conductivity, high specific strength, excellent processability, super-elastic property and high electromagnetic shielding, which can be used for thermal insulation and protection of aerospace.  相似文献   

7.
To improve the erosion resistant of carbon‐carbon composites, an SiC coating was synthesized on carbon‐carbon composites by the in situ reaction method. They are firstly coated with carbon layer by slurry, and then SiC coatings are obtained by chemical vapor reaction. The effects of precoated carbon layer on the microstructure and anti‐erosion properties of SiC‐coated C‐C composites were studied and characterized. The thickness of the SiC coating increased with the increase in the precoated carbon layer thickness. The different thickness of carbon layer affects hardness of the SiC coatings, resulting in diverse erosion resistance of the coatings. The SiC coating prepared with moderate thickness of precoated carbon layer exhibits the best erosion resistance, and show better resistance at an impact angle of 30° than 90°. The eroded surface revealed that coating cracking and brittle fracture, fiber‐matrix debonding, fiber breakage, and material removal, and the additional microcutting and microploughing at oblique impact angle are the major erosion mechanism of SiC coating for C/C composites.  相似文献   

8.
Silicon carbide nanofibers (SiCNFs) used as the second reinforcements of carbon/carbon composites were grown radially on the carbon fiber surface. The microstructure of SiCNFs and their effects on the microstructure and flexural properties of C/C composites were investigated. Results show that there are many defects such as twin crystals and stacking faults in SiCNFs which were grown by catalytic chemical vapor deposition. During the same process, the skin region of carbon fiber has changed. Several SiC layers are formed and the arrangement of the graphite layers around SiC layers is more orderly. In the next chemical vapor infiltration, due to the induction of SiCNFs, the middle textural pyrocarbon were formed firstly and then is the high textural pyrocarbon. The existence of SiCNFs also contributes to the three-phase interface between pyrocarbon, SiCNFs and carbon fibers, resulting in a good bond between carbon fiber and matrix. Those structural changes lead the better flexural properties of SiCNF–C/C composites compared with C/C composites.  相似文献   

9.
In order to improve the oxidation behavior of carbon/carbon silicide carbide composites prepared by liquid silicon infiltration of carbon/carbon porous preforms, a multilayer coating of dense SiC alternated with porous Si-Mo was prepared by chemical vapor deposition combined with slurry painting. Oxidation test showed that weight loss of the coated sample was only 0.25% after 150 h oxidation in air at 1673 K. And the coated sample gained weight in the course of 46 cycles of thermal shock test between 1673 K and 373 K. The coating remained intact during the two kinds of tests and no obvious failure was found. The excellent oxidation protective ability and thermal shock resistance of the SiC/Si-Mo coating can be attributed to the alternated structure.  相似文献   

10.
Carbon-bonded carbon fiber (CBCF) composites are novel and important high-temperature insulation materials owing to their light weight, low thermal conductivity and high fracture tolerance. To further improve the mechanical property of CBCF composite, we propose a three-dimensional (3D) SiC nanowires structure, which is in situ grown on a CBCF matrix via directly annealing silicon oxycarbide (SiOC) ceramic precursor. The synthesized multiscale reinforcements including microscale SiOC ceramics and nanoscale SiC nanowires are mainly attributed to the initial phase separation of SiOC phase and subsequent solid-phase reaction of SiO and C phases. Compared to SiOC/CBCF composite, the resulting 3D SiC nanowires/SiOC/CBCF hybrid structure exhibited high flexural/tensile strength and fractured strain due to the pull-out and bridging behavior of SiC nanowires. This one-step process supplied a feasible way to synthesize 3D SiC nanowires to reinforce and toughen SiOC-modified CBCF composite.  相似文献   

11.
以SiC纳米纤维(SiCnf)为增强体,通过化学气相沉积在SiC纳米纤维表面沉积裂解碳(PyC)包覆层,并与SiC粉体、Al2O3-Y2O3烧结助剂共混制备陶瓷素坯,采用热压烧结工艺制备质量分数为10%的SiC纳米纤维增强SiC陶瓷基(SiCnf/SiC)复合材料。研究了PyC包覆层沉积时间对SiCnf/SiC陶瓷基复合材料的致密度、断裂面微观形貌和力学性能的影响。结果表明:在1 100 ℃下沉积60 min制备的PyC包覆层厚度为10 nm,且为结晶度较好的层状石墨结构;相比于纤维表面无包覆层的复合材料,复合材料的断裂韧性提高了35%,达到最大值(19.35±1.17) MPa·m1/2,抗弯强度为(375.5±8.5) MPa,致密度为96.68%。复合材料的断裂截面可见部分纳米纤维拔出现象,但SiCnf/SiC陶瓷基复合材料界面结合仍较强,纳米纤维拔出短,表现为脆性断裂。  相似文献   

12.
A dense SiC coating toughened by SiC nanowires was prepared on carbon/carbon (C/C) composites using a two-step technique of chemical vapor deposition (CVD) to protect them against oxidation. The morphologies and crystalline structures of the coatings were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. SiC nanowires played a role in decreasing the size of the cracks and improving the thermal shock resistance of the coating. The result of thermal shock between 1773 K and room temperature for 21 times indicates that, compared with the SiC coating without SiC nanowires, the average size of the cracks in the SiC coating toughened with SiC nanowires reduced from 5 ± 0.5 to 3 ± 0.5 μm. The weight loss of the SiC coated C/C composites decreased from 9.32 to 4.45% by the introduction of SiC nanowires.  相似文献   

13.
Pyrolytic carbon (PyC) coating of silicon carbide (SiC) fibers is an important technology that creates quasi-ductility to SiC/SiC composites. Nano-infiltration and transient eutectic-phase (NITE) process is appealing for the fabrication of SiC/SiC composites for use in high temperature system structures. However, the appropriate conditions for the PyC coating of the composites have not been sufficiently tested. In this research, SiC fibers, with several thick PyC coatings prepared using a chemical vapor infiltration continuous furnace, were used in the fabrication of NITE SiC/SiC composites. Three point bending tests of the composites revealed that the thickness of the PyC coating affected the quasi-ductility of the composites. The composites reinforced by 300?nm thick coated SiC fibers showed a brittle fracture behavior; the composites reinforced 500 and 1200?nm thick PyC coated SiC fibers exhibited a better quasi-ductility. Transmission electron microscope research revealed that the surface of the as-coated PyC coating on a SiC fiber was almost smooth, but the interface between the PyC coating and SiC matrix in a NITE SiC/SiC composite was very rough. The thickness of the PyC coating was considered to be reduced maximum 400?nm during the composite fabrication procedure. The interface was possibly damaged during the composite fabrication procedure, and therefore, the thickness of the PyC coating on the SiC fibers should be thicker than 500?nm to ensure quasi-ductility of the NITE SiC/SiC composites.  相似文献   

14.
SiC coatings on the surface of C-C were produced by either silicone resin impregnation/ pyrolysis or reaction sintering. Cycles of resin impregnation/pyrolysis produced an SiC coating, on the walls of fine open pores, which was effective in reducing the oxidation rate of C-C and in shifting the transition temperature to a higher value. Unless it is pre-coated with a pyrocarbon layer before sintering, plain reaction sintered SiC has oxidation behaviors similar to those of the above-mentioned SiC. The dense pyrocarbon film deposition on the surface of C-C could form a better SiC film than others. The carbon film homogenized the surface of C-C and a dense SiC film was established. The oxidation of the coated C-C can be modelled by a set of “oxidation resistors” in series and/or in parallel, with each resistor corresponding to an oxidation element. The controlling mechanism can be resolved from the activation energy. A combined resistant layer, consisting of resin impregnation, pyrocarbon film and reaction sintering SiC, showed the best oxidation resistance of any single-layer coated C-C composite.  相似文献   

15.
Polymer infiltration pyrolysis (PIP) was used to prepare carbon fiber-reinforced silicon carbide (C/SiC) composites, and chemical vapor deposition (CVD) was employed to fabricate SiC coating. The oxidation behavior at 1700?°C and the flexural property at 1200?°C were tested. SiC coating exerted remarkable oxidation effects on PIP-C/SiC composites. In the absence of coating, PIP-C/SiC composites lost 29.2% of its mass, with merely 6.74% of the original flexural strength retained. In contrast, CVD-SiC coated PIP-C/SiC composites had the mass loss of 10.2% and the flexural strength retention ratio of 23.4%. In high-temperature tests, SiC coating played an important role in the flexural strength of PIP-C/SiC composites. The flexural strength of uncoated composites became 330.7?MPa, and that of coated ones reduced from 655.3 to 531.2?MPa.  相似文献   

16.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

17.
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

18.
The carbon fiber reinforced silicon carbide composites were prepared by an isothermal chemical vapour infiltration process. In order to achieve the required density, the carbon fiber preforms in the form of rectangular panels were infiltrated by silicon carbide (SiC) matrix. Prior to the matrix infiltration, a thin coating of boron nitride, as an interphase, was applied on the fiber preform. The test samples were subjected to seal coating of silicon carbide by chemical vapour deposition process. The effect of protective SiC seal coating was examined by testing (3-point bend test) the uncoated and the seal coated samples at different temperatures. Higher value of the flexural strength was observed for the seal coated samples as compared to the uncoated samples, when got tested at high temperature (up to 1400?°C). The detailed analysis of the fractured surfaces of the tested samples was carried out.  相似文献   

19.
To protect carbon/carbon (C/C) composites against oxidation, a mullite coating was prepared on SiC precoated C/C composites by a hydrothermal electrophoretic deposition process. The phase composition, microstructure and oxidation resistance of the prepared mullite/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free mullite coatings. The mullite/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 322 h with a weight loss rate of only 4.89 × 10?4 g/cm2 h. The failure of the multi-layer coatings is considered to be caused by the volatilization of silicate glass layer, the formation of microholes and microcracks on the coating surface and the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 111.11 kJ/mol.  相似文献   

20.
Carbon/carbon (C/C) composites have a wide application as the thermal structure materials because of their excellent properties at high temperatures. However, C/C composites are easily oxidized in oxygen-containing environment, which limits their potential applications to a great degree. Silicon carbide (SiC) ceramic coating fabricated via pack cementation (PC) was considered as an effective way to protect C/C composites against oxidation. But the mechanical properties of C/C composites were severely damaged due to chemical reaction between the molten silicon and C/C substrate during the preparation of SiC coating by PC. In order to eliminate the siliconization erosion, a pyrolytic carbon (PyC) coating was pre-prepared on C/C composites by the chemical vapor infiltration (CVI) prior to the fabrication of SiC coating. Due to the retardation effect of PyC coating on siliconization erosion, the flexural strength retention of the SiC coated C/C composites with PyC coating increased from 46.27 % to 107.95 % compared with the specimen without PyC coating. Furthermore, the presence of homogeneous and defect-free PyC coating was beneficial to fabricate a compact SiC coating without silicon phase by sufficiently reacting with molten silicon during PC. Therefore, the SiC coated C/C composites with PyC coating had better oxidation resistances under dynamic (between room temperature and 1773 K) and static conditions in air at different temperatures (1773?1973 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号