首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portland cement and high alumina cement mortar specimens were exposed to cycles of drying at 40 °C, cooling at 20 °C and immersion in Na2SO4 and MgSO4 solutions at 20 °C. The resistance of mortars was evaluated by visual inspection and by measuring the change in surface hardness and weight of the specimens. The decrease and increase in surface hardness were observed in both mortars by treating with Na2SO4 and MgSO4 solutions, respectively. The combined effect of the chemical and physical attack by Na2SO4 was attributed to the complete failure of Portland cement mortar, whereas only marginal damage of high alumina cement mortar was believed owing to physical salt crystallization. No damage was observed in both mortars treated with MgSO4 solution.  相似文献   

2.
Exposure conditions significantly affect the resistance of cements to sulfate attack. This article investigates the sulfate resistance of ordinary portland cement (OPC), sulfate resistant portland cement (SRPC), and blended cements with different proportions of natural pozzolan and Class F fly ash when subjected to different exposure regimes. Plain and blended cement mortar specimens were stored under three different conditions: (i) continuous curing in lime-saturated water, (ii) continuous exposure to 5% Na2SO4 solution at room temperature, and (iii) cyclic exposure to 5% Na2SO4 solution at room temperature in which the cycles consisted of wetting–drying and heating–cooling. The sulfate resistance of cements was evaluated by measuring the reduction in compressive strength and length change of mortar specimens up to one year of exposure. This study revealed that the performance of blended cements under sodium sulfate solution at room temperature was better than that of SRPC with a 3.6% C3A content when the length change was considered. However, for the structures exposed to sulfate attack and cycles of wetting–drying and heating–cooling, SRPC was found to perform better than blended cements when the compressive strength losses were considered.  相似文献   

3.
A comparative study has been performed on the sulfate resistance of Portland limestone cement (PLC) mortars exposed to extraordinary high sulfate concentrations (200 g/l). PLCs have been prepared by using two types of clinkers having different C3S/C2S ratios and interstitial phase morphologies. Blended cements have been prepared by replacing 5%, 10%, 20% and 40% of clinker with limestone. Cubic (50 × 50 × 50 mm) and prismatic (25 × 25 × 285 mm) cement mortars were prepared. After two months initial water curing, these samples were exposed to three different sulfate solutions (Na2SO4 at 20 °C and 5 °C, MgSO4 at 5 °C). Solutions were not refreshed and pH values of solutions were monitored during the testing stage. The compressive strength and length changes of samples have been monitored for a period of 1 year. Additional microstructural analyses have been conducted by XRD and SEM/EDS studies. Results indicated that in general, limestone replacement ratio and low temperature negatively affect the sulfate resistance of cement mortars. Additionally, clinkers of high C3S/C2S ratios with dendritic interstitial phase structure were found to be more prone to sulfate attack in the presence of high amounts of limestone.From the results, it is postulated that in the absence of solution change, extraordinary high sulfate content modified the mechanism of sulfate reactions and formation of related products. At high limestone replacement ratios, XRD and SEM/EDS studies revealed that while ettringite is the main deterioration product for the samples exposed to Na2SO4, gypsum and thaumasite formation were dominant products of deterioration in the case of MgSO4 attack. It can be concluded that, the difference between reaction mechanisms of Na2SO4 and MgSO4 attack to limestone cement mortars strongly depends on the pH change of sulfate solutions.  相似文献   

4.
When concrete elements are partially exposed to sulfate rich environment, the upper part of concrete in contact with air will be deteriorated more severely than the underground part. Fly ash additions seem to accelerate the collapse of concrete in such an environment. Although concrete technologists attribute concrete damage mainly to salt crystallization or physical sulfate attack, the influence of chemical sulfate attack cannot be neglected and should also be studied.The objective of this paper is twofold. First, pore solution expression test was conducted to squeeze pore solution of different parts of cement paste partially exposed to Na2SO4 solution. The sulfate concentration and pH value of pore solution were measured. Results showed that the sulfate concentration of the pore solution in the upper part of paste in contact with air was much higher than in the lower submerged part. Fly ash additions could draw more sulfates into the paste in a shorter time, forming a higher concentration sulfate pore solution than in normal concrete.The second test was designed to simulate the effect of severe exposure condition on reactive products of cement paste. Pure cement and cement + fly ash (25% dosage) pastes were immersed in 5%, 15% and 30% at 30 °C and 15% at 40 °C Na2SO4 solutions. Thermogravimetric analysis was used to analyze the reaction products of the paste. The results indicate that more ettringite and gypsum were formed in cement + fly ash paste than pure cement paste.  相似文献   

5.
With the aim of studying the influence of cement composition on resistance in high sulfates environment, standard mortars have been produced using ordinary Portland cement (CEM I – 32.5) and limestone cement with 35% limestone (CEM II/B-LL – 32.5). The pore size distribution of the cement pastes was measured. The mortars were immersed in a 5% Na2SO4 solution at 20 °C for 1.5 years and the caused deterioration was been visually observed at a regular basis. Furthermore, the mortars expansion was being estimated by measuring the change of length. At the end of the experiment the compressive strength of the mortars was measured. The deterioration products of the mortars have been identified by means of X-ray diffraction, optical microscopy and environmental scanning electron microscopy. The limestone cement based mortar presented cracking that started at the age of 6 months and continued throughout the experiment. It also displayed high expansion after 250 days of immersion in a 5% Na2SO4 caused, as proved using the analytical techniques, by the formation of gypsum and ettringite. Concluding, the cement with 35% limestone did not perform as well as ordinary Portland cement under the most aggressive laboratory conditions. Hence, it is obvious that the addition of limestone in the cement leads to a totally different behaviour than Portland cement with respect to the resistance in high sulfates environment.  相似文献   

6.
When concrete elements are partially immersed in the sulfate environment, researchers always attribute “salt weathering”, “salt crystallization” or “physical attack” to the failure of concrete. However, there were few micro-analysis evidences to support this view. In this paper, an attempt was carried out to study whether salt weathering is really responsible for the concrete damage.As we know, the interfacial transition zone (ITZ) between paste and aggregate plays a determining role in the performance of concrete. In this paper, we focused on the role of ITZ in “salt weathering” on concrete. Concrete specimens, made with coarse aggregate and cement paste, were partially exposed to a 5% sodium sulfate solution and a 5% magnesium sulfate solution respectively, in a controlled environment (20 ± 2 °C, and 60 ± 5% RH). After 8 months of exposure, a micro-analysis is performed by means of XRD, ESEM and EDS. The experimental results showed that, in the upper part of concrete above the Na2SO4 solution, damage initiated in the ITZ between paste and aggregate due to the formation of ettringite and gypsum. Salt crystallization cannot occur on the paste surface in the ITZ, but it was found on the aggregate surface after damage initiation due to chemical sulfate attack. On the other hand, salt crystallization could occur in the carbonated concrete. There was no trace of salt crystallization in the concrete partially exposed to MgSO4 solution.  相似文献   

7.
In this paper, the sulfate resistance of mortars made from ordinary Portland cement containing available pozzolans viz., fly ash and ground rice husk ash (RHA) was studied. Class F lignite fly ash and RHA were used at replacement dosages of 20 and 40% by weight of cement. Expansion of mortar prisms immersed in 5% sodium sulfate solution and the change in the pH values of the solution were monitored. The incorporation of fly ash and RHA reduced the expansion of the mortar bars and the pH values of the solutions. RHA was found to be more effective than fly ash. Examination of the fractured surface of mortar prisms, after a period of immersion, by scanning electron microscopy confirmed that sulfate attack of blended cement mortars was restricted owing to the reductions in calcium hydroxide and C/S ratio of the C–S–H gel in the blended cement mortar. In comparison to Portland cement mortar, less calcium sulfate and much less ettringite formations were found in the mortars made from blended cement containing RHA. The amounts of calcium sulfate and ettringite found in the blended cement mortar containing fly ash were also small but were slightly more than those of RHA mortar. Up to 40% of Portland cement could be replaced with these pozzolans in making blended cement with good sulfate resistance.  相似文献   

8.
In this study mortars have been produced using ordinary Portland cement (CEM I – 32.5) and limestone cement with 15% limestone addition (CEM II/A-LL – 32.5). The mortars were immersed in a solution of 5% Na2SO4 at 5 °C for 6 months and the caused deterioration was observed visually at a regular basis. The deterioration product of the surface of both mortars has been identified as thaumasite by the means of XRD, FT-IR, DTA and SEM/EDAX analysis. The damage caused due to formation of thaumasite in both mortars was approximately the same and not influenced by the addition of limestone. Furthermore, expansion and compressive strength of the mortars were studied as a function of time and it was proved they were not influenced by thaumasite formation at the age of 6 months.  相似文献   

9.
In this study white cement CEM I-52.5 and white limestone cement CEM II-LL, A and B, with 15% and 25% limestone substitution, were studied. The way delayed ettringite forms, due to exposure to high temperatures (50 °C) and external sulphate attacks, was examined in the mortar samples.The mortars were immersed at 50 °C for 180 days in: (a) a saturated Ca(OH)2 solution and (b) a 5% Na2SO4 solution. During the experiment’s duration, the mortar samples were being observed visually on a regular basis while their expansion was estimated on a weekly basis by measuring the change of length with a micrometer. At the end of the experiment, the mortar samples’ compressive strength was determined and the deterioration products were identified through means of X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM-EDAX), Thermogravimetry (TG) and Infra-Red Spectroscopy (FT-IR).Concluding it is evident that the amount of ettringite is proportional to the C3A content of cement. Sulphates amount in cement is the controlling factor for heat induced ettringite formation since when they are consumed the reaction stops. On the other hand in the case of external sulphate attack another important controlling factor is the compressive strength of the cement; the higher compressive strength the lower the risk of expansion. Finally, in the case of external sulphate attack, limestone, when added to cement, was proved to enhance the durability against sulphates attack when compared to a cement of the same class.  相似文献   

10.
The durability of concrete made with corn cob ash (CCA) blended cement was investigated in this study. Permeability and chemical attack involving H2SO4 and HCl were the key parameters considered. Nine classes of CCA blended cements were employed with the CCA content ranging from 0% to 25%. The 0% CCA replacement involved the use of normal ordinary Portland cement and it served as the control. The water absorption of blended cement concrete was performed using 100 mm cube specimens of mix proportions 1:1½:3, 1:2:4 and 1:3:6 with 0.5, 0.6 and 0.7 water-to-binder ratios, respectively. The chemical attack test was carried out using 50 × 50 × 15 mm mortar specimens of mix proportions 1:1, 1:2 and 1:3 with water-to-binder ratio ranging between 0.26 and 0.29. The results indicated that the use of CCA blended cement reduces the water absorption of concrete specimens. Optimal reduction occurred at 10% CCA replacement for 1:1½:3 and 1:2:4 mix proportions and at 15% CCA replacement for 1:3:6 mix proportion. The resistance to chemical attack was improved as the addition of CCA up to 15% replacement level, caused a decrease in permeability and reduction in weight loss due to reaction of the specimens with HCl and H2SO4 acid water.  相似文献   

11.
In this study,white cement CEM I and white limestone cement CEM II-LL A and Β with 15%, 25% and 35% limestone substitution were studied. The way delayed ettringite is forming due to exposure to increased temperature (50 °C) and external sulfate attack was examined in mortar samples which were immersed for 90 days in three different solutions: (a) saturated solution Ca(OH)2 at 50 °C, (b) saturated solution of Ca(OH)2 at 20 °C and (c) 5% w/w Na2SO4 solution at 50 °C. During this period mortar samples were visually observed regularly while their expansion was estimated on a weekly basis by measuring the change of length with a micrometer. At the end of the 90-days period the compressive strength of the mortars was determined and the deterioration products were identified through means of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (DTG). The results of this study show that DEF occurred in two forms. Samples cured at increased temperature contained DEF type I, which caused mediocre expansion and damage. Samples cured at increased temperature in the presence of sulfates produced DEF type II, which caused significant damage on the surface and exhibited high expansion.  相似文献   

12.
In this study, the effects of Portland composite and composite cement on the properties of cement paste, durability of mortar and permeability of concrete were investigated. The results were compared with reference mixture of cement paste, mortar and concrete made with Portland cement. The ratio of water to cementitious materials (W/Cm) in cement paste, mortar and concrete mixtures were determined in a way that all the similar mixtures had the same workability. Flexural tensile and compressive strength of mortar samples containing Portland Composite and Composite cement were determined at various ages. In cement paste samples, the shortest and longest setting time was obtained in samples made with Portland and composite cement, respectively. Also, maximum amount of volume expansion was found in the sample made with Portland composite cement. Mortar samples made with Portland composite and composite cement had lower strength values than the reference mortar mixture at early ages but at 28 days and later ages they had higher strength values than the reference mixture. In durability tests, there was no loss of weight and cracks in mortar mixture samples made with Portland composite and composite cement when they were held in microthiol, Na2SO4 and MgSO4 solutions. Also, no water leakage was observed through the concrete samples made with Portland composite and composite cement when they were held under five-bar pressurized water.  相似文献   

13.
Conclusions 1. Plugging clay-cement grouts made from ordinary portland cement are sufficiently stable under the action of extremely aggressive sulfate media, and their use for compacting karstic soil bases can be recommended.2. The sulfate resistance of all grouts increases significantly as a result of addition to them of Na2SO4 · 10 H2O in the amount of 2% with respect to the binder mass.Scientific-Research Institute of Bases and Underground Structures. Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 5, pp. 21–24, September–October, 1986.  相似文献   

14.
The effect of various additives (Ca(OH)2, K2SO4, Na2SO4, Al2(SO4)3) was evaluated on the hydraulic character and stability of pastes of 50–75% Fluorgypsum, 15–30% Portland cement and 10–20% Blast furnace slag. Characterization included length changes, compressive strength, SEM, DTA and XRD. The combination of Na2SO4 and Al2(SO4)3 favored early strength but caused detrimental expansion and strength losses after 90 days; whereas the use of only K2SO4 was favorable for strength and dimensional stability. The type of additive had a more important effect on stability and strength than the amounts of cement and slag. XRD indicated the presence of anhydrite, gypsum, ettringite, CaCO3 and an unidentified phase, the interaction of these is proposed to explain the behavior of the cements investigated. SEM showed that cement and slag reacted forming C–S–H that enhanced the hydraulic character by engulfing the gypsum crystals.  相似文献   

15.
研究了羟乙基甲基纤维素(HEMC)改性水泥砂浆在硫酸盐侵蚀作用下的力学性能演变规律及HEMC的作用机理.结果表明:HEMC会明显降低水泥砂浆在硫酸盐侵蚀作用下的抗压强度和抗折强度,但能显著提高黏结抗拉强度;硫酸盐短期侵蚀作用能提高HEMC改性水泥砂浆的力学性能,但长期侵蚀作用会显著降低力学性能;HEMC改性水泥砂浆在硫酸盐长期侵蚀作用下仍具有优良的力学性能,原因在于HEMC能优化水泥砂浆的孔结构及内部界面结构,显著降低水分和硫酸根离子的渗透和扩散;就硫酸盐长期侵蚀作用下的力学性能而言,HEMC在水泥砂浆中存在着较佳掺量范围.  相似文献   

16.
The use of colemanite ore waste (CW) containing boron as a cement replacement material increases the long-term strength of the concrete. Despite this benefit, the use of CW is limited due to the low-early strength of the CW concrete. The study reported below intended to eliminate this problem. The experimental part comprises two stages: in the first stage the possibility of using CW instead of natural gypsum has been investigated through several tests. In the second stage, a number of chemical activators, namely, sulphonated melamine formaldehyde (SMF) condensates, sulphonated naphthalene formaldehyde (SNF) condensates, Na2SO4Na2SO4, and calcium chloride were used. The results showed that replacement of natural gypsum by CW results in an acceptable initial and final setting time of cement and increases the compressive strength of the mortar at long term. The addition of chemical activators into the system accelerated pozzolanic reaction and considerably increased early strength of the mortars. The results also indicate that chemical activators not only alter the rate of cement paste hydration, but the microstructure of mortar as well.  相似文献   

17.
The aim of this study is to examine physical, chemical, mechanical and microstructural properties of mortars produced by blending clinoptilolite, which is a zeolite mineral abundantly found in nature, into Portland cement with increasing ratios. It was observed that plasticity times extend depending on the blend ratios of clinoptilolite blended cements and that early strengths change according to Blaine values. It was also determined that the final strengths develop in proportion to reactive SiO2 and ion exchange capacity of clinoptilolite depending on the CH level in the medium.  相似文献   

18.
水泥基材料抗TSA侵蚀性能影响因素研究   总被引:1,自引:0,他引:1  
高小建  马保国 《工业建筑》2006,36(12):1-4,33
研究了不同配合比掺石灰石粉水泥砂浆在不同硫酸盐溶液中浸泡1年期间的外观、强度和矿物成分变化。结果表明,水灰比越低,砂浆抗TSA侵蚀性能越好;不同品种水泥的抗TSA侵蚀能力由高到低依次为:硫铝酸盐水泥>抗硫酸盐水泥>普硅水泥;掺硅灰和矿渣细粉均能明显改善混凝土抗TSA侵蚀性能,且矿渣粉掺量越大效果越明显。镁盐对碳硫硅酸钙晶体(thaumasite)的生成和TSA侵蚀破坏具有一定促进作用;水泥基材料TSA侵蚀破坏也可能发生于15℃以上环境中,环境温度对水泥基材料整体抗硫酸盐侵蚀性能的影响规律与材料组分有关。  相似文献   

19.
In this study, the effects of three types of plasticizing chemical admixtures (modified lignosulfonate, sulfonated naphthalene formaldehyde and polycarboxylate based) on deleterious expansion due to alkali–silica reaction (ASR) have been investigated. Two different types of cements with low (0.53 Na2O eq.) and high (0.98 Na2O eq.) alkali contents, a non-reactive crushed limestone as fine aggregate and a reactive river sand were used within the scope of the experimental program. ASR tests were conducted according to accelerated mortar bar method (ASTM C 1260). Additionally the flow value, dry unit weight, capillary water absorption and compressive strength tests were performed. Test results indicated that mortars prepared with inert fine aggregate caused no significant expansion, regardless of cement type, admixture type and dosage. However, for mixes containing reactive sand, admixtures increased or decreased the expansion values (compared to plain mortars) depending on the alkali content of cement used. The magnitude of change of expansion also depended on the type and amount of admixture incorporation which have a dominant effect on stability and compactability of mortars. The high-alkali cement usually revealed the ASR expansion augmentation behaviour of admixtures. In contrast, low alkali cement decreased the expansion values compared to the control specimens.  相似文献   

20.
This study is focusing on durability of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste was prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. A similar paste was impregnated with unsaturated polyester resin (UPE) followed by gamma rays ranging from 10 to 50 kGy. The obtained data indicated that the polymer-impregnated specimens higher values of compressive strength than those of the neat blended cement paste. In addition, the polymer-impregnated blended cement specimens irradiated at a dose of 30 kGy and neat blended cement specimens were immersed in seawater and different concentrations of magnesium sulfate solutions namely, 1%, 3% and 5% up to 6 months. The results showed that the polymer-impregnated blended cement (OPC–RHA–UPE) paste irradiated at a dose of 30 kGy has a good resistance towards sulfate and seawater attack as compared to the neat blended cement (OPC–RHA) paste. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号