首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
Surface nanomechanical behavior under nanoindentation of ZrN and ZrCN film on NiTi substrate was studied. The surface hardness and modulus of the films increase initially with larger nanoindentation depths and then reach their maximum values. Afterwards, they diminish gradually and finally reaching plateau values which are the composite modulus and composite hardness derived from the ZrN/ZrCN film and NiTi substrate. They are higher than those of electropolished NiTi SMA due to the properties of ZrN and ZrCN. In comparison, the surface nanomechanical properties of electropolished NiTi exhibit a different change with depths.  相似文献   

2.
The surface structure and biomedical properties of NiTi shape memory alloy (SMA) samples after undergoing electropolishing and chemical polishing are determined and compared employing scanning electron microscopy, X-ray photoelectron spectroscopy, inductively-coupled plasma mass spectrometry, hemolysis analysis, blood platelet adhesion test, and MTT test. The results indicate that after chemical polishing, there is still a high Ni concentration on the surface of the NiTi SMA. On the other hand, electropolishing can form a thin surface titanium oxide film (about 10 nm thickness) with depleted Ni. In addition to the TiO2 phase, some titanium suboxides (TiO and Ti2O3) are found in the surface film. Compared to chemical polishing, electropolishing can more effectively mitigate out-diffusion of Ni ions and the wettability, blood compatibility, and thromboresistance are also better. However, no difference on the cytocompatibility can be observed from samples that have been chemically polished or electropolished.  相似文献   

3.
A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na2SO4 electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.  相似文献   

4.
The purpose of this study was to test the hypothesis that the combination of micro-arc oxidation and alkali heatment (MAH) would improve the cytocompatibility of a newly designed Ti-24Nb-4Zr-8Sn alloy.In this study,commercially pure titanium (cp Ti) and Ti-24Nb-4Zr-8Sn were used.Surface modification of Ti-24Nb4Zr-8Sn by a two-step treatment of micro-arc oxidation (MAO) and alkali heatment was reported.Surface characterizations were performed by scanning electron microscopy (SEM),thin film X-ray diffraction (TF-XRD) and X-ray photoelectron spectroscopy (XPS).The MAH layer consisted of finer crystals and possessed a higher degree of crystallity and stability than the MAO layer.A biocompatibility study on treated and untreated Ti24Nb-4Zr-8Sn in comparison with cp Ti was carried out to investigate the effect of the different surfaces on the bone integration property in vitro.The cellular assays revealed that the MAO and MAH layer favored the initial adhesion of MC3T3-E1 cells and that the growth rate of MC3T3-E1 cells on MAH layer was significantly higher than that on the conventional MAO-treated layer after 3-day and 5-day incubation,demonstrating the greater potential of the hybrid treatment of micro-arc oxidation followed with alkali heatment as a novel surface modification method for implanting materials.  相似文献   

5.
In order to improve the corrosion resistance and biocompatibility of NiTi surgical alloy, TiO2 and TiO2-SiO2 thin films were prepared by sol-gel method. The surface characteristics of the film, which include surface composition, microstructure and surface morphology, were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectra (XPS), respectively. A scratching test was used to assess the interface adhesive strength between the film and substrate. The corrosion resistance of NiTi alloy coated with oxide films were studied by anodic polarization curves measurement in biological solution. Additionally, a preliminary study of the in vitro bioactivity of the films was conducted. The results indicated that TiO2 and TiO2-SiO2 (Ti/Si=4:1) films have higher electrochemical corrosion resistance and can be used as protective layers on NiTi alloy. In addition, TiO2-SiO2 composite films have better bioactivity than TiO2 film.  相似文献   

6.
The NiTi shape memory alloy has been modified by plasma immersion ion implantation (PIII) with Ta at different incident currents to improve the corrosion resistance and other surface and biological properties. The surface topography, chemical components, mechanical properties, corrosion resistance and cytocompatibility are investigated. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) revealed that Ta implantation led to the formation of compact Ta2O5/TiO2 nano-film on the surface of the NiTi alloy. The results of Auger electron spectroscopy (AES) showed that Ni was suppressed in the superficial surface layer of the modified NiTi alloy samples. The results of nano-indentation illustrated a lower level of nano-hardness and Young's modulus after Ta implantation. Potentiodynamic anodic polarization curves showed that the corrosion resistance of NiTi alloys was enhanced by Ta implantation. Cells reached confluency and a double-layered structure had developed after cultured for three days. The NiTi alloy modified by a moderate incident current possesses a uniform and slippery surface morphology and the largest surface roughness, leading to the best corrosion resistance and the highest cell proliferation rate, respectively.  相似文献   

7.
使用模具并采用磁控溅射法在铁电陶瓷PZT基体上沉积具有条形分布结构的Ni Ti SMA薄膜。显微组织结构观察发现,以条形分布结构方式沉积的Ni Ti SMA薄膜晶化处理后具有等轴晶结构。比较所制备PZT/Ni-Ti SMA薄膜复合材料与纯PZT的介电常数及介电损耗发现,两者的介电损耗水平接近;复合材料的介电常数比纯PZT的提高约18%。Ni Ti SMA的沉积使基体中靠近薄膜区域的Zr/Ti物质的量比恰好落在准同型相界区内,致使所制备复合材料的介电性能优于纯PZT。  相似文献   

8.
The influence of the number of layers and thermal annealing on the structure, elemental and phase compositions, and nanohardness of multilayer fullerite/aluminum films has been studied by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray microanalysis, and nanoindentation. The results demonstrate that sequential growth of five aluminum layers and four fullerite layers, each 50 nm in thickness, on oxidized single-crystal silicon substrates leads to the formation of textured films, which retain 111 texture after vacuum annealing at 620 K (τ = 5 h). In the case of the growth of bilayer films of greater thickness, C60(200 nm)/Al(300 nm), the fullerite and aluminum have a polycrystalline structure with no growth texture. Thermal annealing of the bilayer films leads to the formation of a new phase, AlxC60. The materials studied here possess enhanced nanohardness compared to pure aluminum and fullerite films.  相似文献   

9.
Abstract

Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.  相似文献   

10.
The NiTi alloy (Nitinol), with its favorable micro-structured properties and self-passivity (resembling that of pure Ti) is used as an implant material for arterial stents and orthodontic wires. During the long term contact of the alloy with aggressive environment of human body, corrosion by releasing Ni2 + ions can occur. Thus, the usefulness of such material can be dramatically enhanced if its interface structure and surface chemistry are controlled. The octadecylphosphonate interface (ODP) synthesis, which involves a self-assembled covalently (monodentate type) bonded film of octadecylphosphonic acid (ODPA) on the oxide covered NiTi surface, produces stable and corrosion resistant interfaces. This paper introduces integrated approach to the characterization of the NiTi/ODP interfacial architecture as well as the structure of the electrified ODP/solution interface using high-resolution XPS and in situ EIS measurements. The main focus of this work was to determine the influence of the ODPA deposition method (spray and immersion) on the depth-dependent structural characteristics and orientation of ODPA molecules in the surface film by means of angle resolved XPS. Mechanically strong and chemically stable NiTi/phosphonate interfaces have the potential for their successful implementation in stent technologies.  相似文献   

11.
Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.  相似文献   

12.
Wenbo Han  Zhi Wang 《Materials Letters》2009,63(24-25):2175-2177
Graphite containing nominally 40 vol.% ZrC (graphite–ZrC) was prepared from commercially available ZrO2 and graphite powders by hot pressing at 2000 °C in a vacuum. The oxidation behavior of the graphite–ZrC composite was carried out in dry stagnant air at the temperatures of 1200 and 2200 °C. Compared with the pure graphite, the graphite–ZrC composite exhibited good oxidation resistance because the mass loss of the composite powder was significantly lower than that of the pure graphite. The mass loss of graphite–ZrC at 2200 °C was lower than pure graphite at 1200 °C. Furthermore, the introduction of ZrC also improved the strength of the graphite–ZrC composite.  相似文献   

13.
采用射频磁控反应溅射在单晶Si(100)上沉积了一系列不同Al含量的(Zr,Al)N薄膜,利用能谱仪(EDS)、X射线衍射仪(XRD)、扫描电镜(SEM)和微力学探针对薄膜的成分、结构、力学和抗氧化性能进行了表征。研究结果表明,当Al含量在0%~20.31%(原子分数)之间时,薄膜是B1型(NaCl)单相结构;当Al含量为31.82%时,同时出现B1和B4型(ZnS)双相结构。当Al含量超过36.82%时,以B4结构为主。随着铝含量的增加,薄膜晶面间距减小,晶格常数变小。薄膜的力学性能测试表明,适当的Al含量可以提高薄膜的硬度。随着Al含量的增加,薄膜的抗氧化性能得到改善,对于B1型(Zr,Al)N薄膜,其结构稳定性也得到增强。  相似文献   

14.
Tungsten (W) thin films were prepared by magnetron sputtering onto Si (100) substrates. Their microstructures were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The hardness and modulus were evaluated by nanoindentation. It is found that a 30 nm Cr sticking layer induces structure changes of deposited W film from β-W to α-W structure. In addition, remarkable hardness enhancement both for the deposited and annealed W...  相似文献   

15.
NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate.  相似文献   

16.
A titanium carbide (TiC) nanostructured coating and Ti intermediate layer are fabricated on NiTi by plasma immersion ion implantation and deposition (PIII&D) to improve the surface properties. The chemical composition and structure are determined by X-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Nano-indentation is used to evaluate the mechanical properties of the thin film and the biological characteristics are assessed by electrochemical measurement and soaking tests in simulated body fluids. Based on the potentiodynamic polarization and Ni release data after the polarization test, the Ti/TiC nanostructure coating has better corrosion resistance compared to the NiTi substrate and there is significantly less Ni ion release from the NiTi substrate into the simulated body fluids than the uncoated NiTi alloy.  相似文献   

17.
In this work NiTi shape memory alloy was fabricated from mixed elemental powders, Ni plated titanium powder and Ni heated/plated titanium powder by Ar-sintering. Electroless plating process was utilized to fabricate Ni plated titanium powder. For this purpose titanium powder was plated in an electroless Ni bath for 225?min and hydrazine hydrate was used as a reductant to deposit pure nickel on the titanium particles. Ni plated titanium powder was heat treated under an argon atmosphere at 1000?°C to prepare Ni heated/plated titanium powder. Finally, the three sample powders were pressed by CIP followed by sintering at 980?°C for 8?h to manufacture NiTi shape memory alloy. The prepared powders, as well as sintered samples, were characterized by scanning electronic microscopy (SEM), energy dispersive spectrometer analysis (EDS), X-ray fluorescence (XRF), X-ray diffraction (XRD) and differential scanning calorimetric (DSC). The results indicated the presence of NiTi phase and also non-transformable phases (NiTi2 and Ni3Ti) in the heated/plated Ti powder and sintered samples. NiTi compound was dominated phase in the heated/plated sintered sample. All three sintered samples, as well as heated/plated powder, showed one-step phase transformation (B2???B19′).  相似文献   

18.
《Materials Letters》2007,61(11-12):2385-2388
NiTi was galvanostatically anodized in acetic acid to increase the oxide film thickness for improving corrosion resistance. The galvanostatic anodization behavior of NiTi in acetic acid differed markedly from that of Ti. In particular, the anode potential reached was much lower for NiTi, and thus only thin oxide films could be obtained. With a suitable choice of anodizing conditions, the anodic oxide film formed had a thickness of 20–25 nm, as determined by profilometric measurement. Atomic force microscopy (AFM) revealed that the surface roughness was increased after anodization. Analysis by X-ray photoelectron spectroscopy (XPS) showed a low Ni/Ti ratio of 0.04 at the anodic oxide surface versus a value of 0.30 for bare NiTi. Electrochemical impedance measurements of the anodized sample in Hanks' solution at 37 °C recorded a 9-fold increase in polarization resistance, and cyclic polarization tests also recorded a matching reduction in the passive current density. These observations indicate that anodization of NiTi can serve as a simple low-temperature method to enhance the corrosion resistance of NiTi when used as an implant material.  相似文献   

19.
采用溶胶-凝胶法和离子束增强沉积法在医用NiTi合金表面制备TiO2薄膜以提高其生物相容性。利用X射线衍射(XRD)、原子力显微镜(AFM)和X光电子能谱(XPS)对薄膜的结构、表面形貌及组成进行了比较研究;电化学腐蚀实验表明,两种方法制备的TiO2薄膜对金属基体均起到一种保护膜的作用,能够提高医用金属材料在模拟体液中的抗腐蚀性;对薄膜表面固定肝素抗凝血分子进行研究发现,溶胶-凝胶法制备的TiO2薄膜表面能够获得较好的肝素固定效果。  相似文献   

20.
A series of experiments was carried out to optimize the pulsed laser deposition parameters for the fabrication of high quality NiTi shape memory alloy thin films. Smooth NiTi shape memory alloy thin films were deposited at high growth rate with optimum deposition parameters based on the analysis of the relationships among the morphology of the target surface and the deposited thin film, the laser energy, the target–substrate distance, the thin film composition and its growth rate. Crystal structures and phase transformation temperatures of the annealed Ni49.7Ti50.3 thin film were characterized by using X-ray diffraction and differential scanning calorimetry, respectively. The martensitic transformation temperature of the crystallized Ni49.7Ti50.3 thin film is found to be lower than room temperature and 27°C lower than that of the NiTi target material. These results are attributed to the refined grain size of the thin film and its composition, which deviates slightly from Ni50Ti50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号