首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical, optoelectronic, and thermodynamic properties of carbon silicon nitride spinel compound have been investigated using density functional theory. The exchange–correlation potential was treated with the local density approximation (LDA) and the generalized gradient approximation of Perdew–Burke and Ernzerhof (PBE-GGA). In addition, the Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (TB-mBJ) were also applied to improve the electronic band structure calculations. The ground state properties, including lattice constants and bulk modulus, are in fairly good agreement with the available theoretical data. The elastic constants, Young’s modulus, shear modulus, and Poisson’s ratio have been determined by using the variation of the total energy with strain. From the elastic parameters, it is inferred that this compound is brittle in nature. The results of the electronic band structure show that CSi2N4 has a direct energy band gap (ΓΓ). The TB-mBJ approximation yields larger fundamental band gaps compared to those of LDA, PBE-GGA, and EV-GGA. In addition, we have calculated the optical properties, namely, the real and the imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, and energy loss function for radiation up to 40.0 eV. Using the quasi-harmonic Debye model which considers the phononic effects, the effect of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for this compound were investigated for the first time.  相似文献   

2.
In this work, density functional theory calculations on the structural, mechanical, lattice dynamical, and thermodynamical properties of YB2 in AlB2-type and monoclinic (C2/m) structures are reported. The local density approximation has been used for modeling exchange–correlation effects. We have predicted the lattice constants, bulk modulus, elastic constants, shear modulus, Young’s modulus, Poison’s ratio, Debye temperature, and sound velocities. Furthermore, the phonon dispersion curves, corresponding phonon density of states, some thermodynamical quantities such as internal energy, entropy, heat capacity, and their temperature-dependent behaviors are presented. Our structural and some other results are in agreement with the available experimental and theoretical data.  相似文献   

3.
To investigate the structural, elastic, and lattice dynamical properties of the germanium diiodide, we have performed the first-principles calculations by using the local density approximation method based on density-functional theory. Some basic physical parameters such as lattice constant, bulk modulus and its first derivatives, elastic constants, shear modulus, Young’s modulus, and Poisson’s ratio are calculated. The phonon dispersion curves, electronic band-structures, and total and partial density of states have also been calculated for ground state C6 phase of GeI2. Our results show that this structure has got 1.72 eV direct band gap. Our secondary results on the temperature-dependent behavior of thermodynamical properties such as entropy, heat capacity, internal energy, and free energy are also presented for the same compounds. The obtained results are in good agreement with the available experimental and other theoretical data.  相似文献   

4.
The structural, electronic and elastic properties of the AlCu2M (M = Sc, Ti and Cr) compounds in the pressure range of 0–100 GPa was investigated based on density functional theory. The calculated lattice parameters of the AlCu2M compounds at zero pressure and zero temperature are in very good agreement with the existing experimental data. The bulk modulus, shear modulus and Young’s modulus increases with the increase of pressure, which indicates that higher materials hardness may be obtained when increasing pressures. The bulk modulus and Young’s modulus of AlCu2Cr is the greatest under pressure. The shear modulus of AlCu2Ti is the highest above 30 GPa, while that of the AlCu2Sc is the strongest below 30 GPa. The calculated B/G values at zero and higher pressure indicated that they are ductile materials. The electronic densities of states and bonding charge densities have been discussed in details, revealing these compounds exhibit half-metallic behavior. In addition, the pressure dependences of Debye temperatures of AlCu2M compounds have also been calculated. The results indicate that Debye temperatures increase with increasing pressure.  相似文献   

5.
It is of academic interest to study the ternary intermetallic compounds of the Al–Si–RE system for the development of both structural and functional materials. In this work, the structural, electronic, elastic and thermodynamic properties of the AlSi2RE (RE = La, Ce, Pr and Nd) compounds was investigated using first-principle calculations based on density functional theory. The calculated structural parameters of AlSi2RE compounds are consistent with the experimental data. Due to the fact that there is strong Coulomb correlation among the partially filled 4f electron for RE atoms, we present a combination of the GGA and the LSDA + U approaches to investigate the electronic structures of Al3RE compounds in order to obtain the appropriate results. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke’s law. The bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio ν of polycrystalline AlSi2RE compounds were determined using the Voigt–Reuss–Hill (VRH) averaging scheme. The Debye temperature of AlSi2RE compounds can be obtained from elastic constants. The temperature dependence of the internal energy, free energy, entropy and heat capacity for AlSi2RE compounds were also calculated by using the quasi-harmonic approximation.  相似文献   

6.
The stability, thermal and mechanical properties of PtxAly intermetallic compounds are investigated by density functional theory (DFT). The cohesive energy and formation enthalpy of PtxAly phases show that they are thermodynamically stable structures and these are in good agreement with the experiments. The heat capacity of the compounds is calculated by quasi-harmonic approximation (QHA) method. The thermal expansion coefficient as a function of temperature for each compound is also discussed. The elastic properties such as bulk modulus, Young’s modulus are evaluated by Viogt–Reuss–Hill approximation. The anisotropic properties of sound velocities for the PtxAly compounds are explored. The calculated Poisson’s ratio varies from 0.26 to 0.39 for PtxAly phases and the bonds in the compounds are mainly metallic and covalent types.  相似文献   

7.
Theoretical investigation on TbTe for its structural, electronic, magnetic, and thermodynamic stuffs has been carried within density functional theory (DFT) as implemented in WIEN2K code. TbTe was found stable in ferromagnetic phase. The calculated ground-state parameters were found in a good agreement with the experimental data. The compound was found to have a structural stability in cubic B1 (NaCl-type structure) phase, but under the application of high pressure (at 27 GPa), it undergone to B2 (CsCl-type structure) phase of pressure. The second-order elastic constants and mechanical properties like Young’s modulus, Shear modulus, Poisson ratio, Cauchy pressure (C12C44), and Pugh’s ratio (B/G) were calculated. The present calculations confirmed the ductile nature of TbTe. Further, the thermodynamic investigations have been carried using quasi-harmonic Debye approximation. We have calculated the pressure and temperature dependence of Debye temperature (??D), bulk modulus (B), thermal expansion (α), heat capacities (CV), and entropy (S) in the temperature range of 0 to 1000 K and pressure range of 0 to 25 GPa.  相似文献   

8.
A theoretical study of structural, electronic and thermal properties of CdS, CdSe and CdTe compounds is presented; using the full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the exchange-correlation potential calculation. The ground-state properties are determined for the bulk materials (CdS, CdSe and CdTe) in cubic phase. Quantities such as the lattice constants and bulk modulus of interest are calculated. Detailed comparisons are made with published experimental and theoretical data and show generally good agreement. Besides this, a numerical first-principles calculation of the elastic constants was used to calculate C11, C12 and C44. The pressure dependence of band gaps for these systems was investigated. We also presented the thermal effects on some macroscopic properties of these compounds using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. We have obtained successfully the variations of the volume, thermal expansion coefficient, heat capacities and Debye temperature as a function of the pressure and temperature.  相似文献   

9.
Structural, magnetic, electronic, and elastic properties of Rh2MnGe, Rh2MnSn, and Rh2MnPb Heusler compounds have been calculated using full potential linearized augmented-plane wave plus local orbitals (FP-L/APW+lo) method based on the spin density functional theory, within the generalized gradient approximation (GGA) and (GGA+U) (U is the Hubbard correction). Results are given for the lattice parameters, bulk moduli, spin magnetic moments and elastic constants. We have derived the bulk and the shear moduli, Young’s and Poisson’s ratio for Rh2MnZ (Z=Ge, Sn, and Pb). The elastic modulus of Rh2MnGe is predicted to be the highest. Also, we have estimated the Debye temperatures from the average sound velocity. We discuss the electronic structures, total and partial densities of states and local moments and we investigate the pressure effect on the elastic properties by calculating the elastic constants at various volumes.  相似文献   

10.
In this work, density functional theory calculations on the structural, mechanical, and lattice dynamical properties of AgB2 and AuB2 compounds in AlB2, OsB2, and ReB2 structures are reported. Generalized gradient approximation has been used for modeling exchange-correlation effects. The detailed information is given for the energetically most stable structure for AgB2 and AuB2 compounds. Specifically, the lattice parameters, bulk modulus, cohesive energies, elastic constants, shear modulus, Young’s modulus, Poison’s ratio, Debye temperature, sound velocities, and anisotropic factors are studied. The elastic properties are also studied under pressure. The phonon dispersion curves and corresponding phonon density of states are calculated and discussed. Our structural and some other results are in agreement with the available experimental and theoretical data.  相似文献   

11.
Using a full-relativistic version of the full-potential augmented plane wave plus local orbitals (FP-APW + lo) method within the local density approximation (LDA), we have studied the elastic, electronic and optical properties of the filled skutterudites CeFe4As12 and CeFe4Sb12. Structural parameters, including lattice constant, internal free parameters and, bulk modulus and its pressure derivative were calculated. We have determined the full set of first-order elastic constants, Young’s modulus, Poisson’s ratio and the Debye temperature of these compounds. Band structures, density of states, pressure coefficients of energy band gaps are also given. It is found that both CeFe4As12 and CeFe4Sb12 are indirect band gap semiconductors. The valence band maximum (VBM) is located at Γ point, whereas the conduction band minimum (CBM) is located at N point. Optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss were calculated for radiation up to 30 eV. This is the first quantitative theoretical prediction of the elastic and optical properties for these compounds, and it still awaits experimental confirmation.  相似文献   

12.
The structural, electronic, elastic, and thermodynamic properties and the superconducting transition temperature of MNiBN (M = La, Ca) compounds are investigated by using the first principles within the generalized gradient approximation (GGA). The calculated lattice constants are found in an agreement with the available experimental data, and the deviations are underestimated by less than 2 %. The calculated elastic constants indicate that both of the MNiBN (M = La, Ca) compounds are mechanically stable. The shear modulus, Young’s modulus, Poisson’s ratio σ, and the ratio B/G are also calculated. Finally, the Debye temperature (?? D) and the superconducting transition temperature are obtained.  相似文献   

13.
We investigated the pressure dependence of the structural and elastic properties of OsSi2 in the range 0–60 GPa using first-principles calculations based on density functional theory. Calculations were performed within the local density approximation as well as the generalized gradient approximation to the exchange correlation potential. The calculated lattice constants and atomic fractional coordinates are in good agreement with previous experimental results. The pressure dependence of nine independent elastic constants, c11, c22, c33, c44, c55, c66, c12, c13, and c23, of orthorhombic OsSi2 has been evaluated. The isotropic bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, elastic anisotropy, and Debye temperature of polycrystalline OsSi2 under pressure are also presented.  相似文献   

14.
The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt–Reuss–Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young’s modulus E and Poisson’s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung–Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young’s modulus of single-crystal under different pressure is also presented.  相似文献   

15.
16.
The structural, elastic, electronic, and optical properties of CdRh2O4 with cubic $ (Fd\overline{ 3} m) $ and orthorhombic (Pnma) structures have been investigated using a pseudopotential plane wave (PP-PW) method within the local density approximation (LDA). The calculated lattice parameters agree reasonably with the experimental values. The single-crystal elastic stiffness constants C ij s of the cubic and orthorhombic phases are investigated using the stress–strain method. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young’s modulus, bulk modulus–shear modulus ratio, Poisson’s ratio, and elastic anisotropy ratio are determined based on Voigt–Reuss–Hill approach. The use of the hybrid functional sX-LDA leads to considerably improved electronic properties compared to standard LDA approach. On the other hand, the dielectric function, refraction index, reflectivity, conductivity function, and energy-loss spectra were obtained and analyzed on the basis of electronic band structures and density of states.  相似文献   

17.
The structural, electronic, elastic and thermal properties of two lutatium mono-pnictides (LuAs and LuSb) have been studied using the density functional theory within the generalized gradient approximation. The calculations indicate that there is a structural phase transition from their ambient NaCl – (B1) to CsCl – (B2) structure at 56.7 and 25.2 GPa along with the volume collapse percentage of 3% and 5%, respectively. Structural parameters like lattice constant (a0), bulk modulus (B) and pressure derivative of the bulk modulus (B′) are presented. The calculated band structures indicate that B1 and B2 phase of these compounds are metallic. We have calculated the second order elastic constants for these compounds. We also compare the ground state (a0 and B) and high pressure phase transition (Pt) properties for three members of lanthanide series.  相似文献   

18.
In the present paper the expression of cohesive energy and the bulk modulus as a function of volume are formulated for high-T c copper oxide superconductors. The model employed consists of long-range electrostatic Coulomb interaction and short-range overlap repulsion. The short-range overlap potential is considered in the Born-Landé inverse power form. The model, parameters of the Born-Landé model are calculated from the equilibrium condition and data of bulk modulus at room temperature. The computed values of pressure derivatives of bulk modulus atP=0 and the values of bulk modulus are found to be in very close agreement with experimental values for high-T c copper oxide and their nonsuperconducting parent compounds. It is also found that the quantity ΔU/U(V o) of these compounds increases with increasing hydrostistic pressure.  相似文献   

19.
The elastic constants (C ij ) of boride, carbide, and nitride (RuB, WC, WN, and TaN) ceramics with WC-type structures have been calculated using the full-potential linearized augmented plane wave (FLAPW) method with an exchange-correlation potential in the generalized gradient approximation (GGA). Numerical estimates of elastic parameters of the corresponding polycrystalline ceramics (bulk compression modulus, shear modulus, Young’s modulus, Poisson’s ratio, and Lamé’s coefficients) of these ceramics are obtained and analyzed for the first time.  相似文献   

20.
The elastic constants (C 11, C 12, and C 44) of all the known cubic binary phases of thorium with non-metals, ThX (X = C, N, O, P, As, Sb, S, Se), have been calculated using the full-potential linearized augmented plane wave (FLAPW) method with an exchange-correlation potential in the generalized gradient approximation (GGA). Numerical estimates of elastic parameters of the corresponding polycrystalline ceramics (bulk compression modulus, shear modulus, Young’s modulus, Poisson’s ratio, and Lamé’s coefficients) are obtained and analyzed for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号