首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with discretization and numerical solution of a regularized version of the hypersingular boundary integral equation (HBIE) for the two-dimensional Laplace equation. This HBIE contains the primary unknown, as well as its gradient, on the boundary of a body. Traditionally, this equation has been solved by combining the boundary element method (BEM) together with tangential differentiation of the interpolated primary variable on the boundary. The present paper avoids this tangential differentiation. Instead, a “pure” BEM method is proposed for solving this class of problems. Dirichlet, Neumann and mixed problems are addressed in this paper, and some numerical examples are included in it.  相似文献   

2.
This paper presents a wideband fast multipole boundary element approach for three dimensional acoustic shape sensitivity analysis. The Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem associated with the conventional boundary integral equation method in solving exterior acoustic wave problems. The sensitivity boundary integral equations are obtained by the direct differentiation method, and the concept of material derivative is used in the derivation. The iterative solver generalized minimal residual method (GMRES) and the wideband fast multipole method are employed to improve the overall computational efficiency. Several numerical examples are given to demonstrate the accuracy and efficiency of the present method.  相似文献   

3.
An efficient algorithm is employed to evaluated hyper and super singular integral equations encountered in boundary integral equations analysis of engineering problems. The algorithm is based on multiple subtractions and additions to separate singular and regular integral terms in the polar transformation domain, primarily established in Refs. (Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FJ. A general algorithm for the numerical solution of hypersingular boundary integral equations. Trans ASME 1992;59:604–614; Guiggiani M, Casalini P. Direct computation of Cauchy principal value integral in advanced boundary element. Int J Numer Meth Engng 1987;24:1711–1720. Guiggiani M, Gigante A. A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J Appl Mech Trans ASME 1990;57:906–915). It can be proved that the regular terms have finite analytical solutions in the range of integration, and the singular terms will be replaced by special periodic kernels in the integral equations. The subtractions involve to multiple derivatives of analytical kernels and the additions require some manipulation to separate the remaining regular terms from singular ones. The regular terms are computed numerically. Three examples on numerical evaluation of singular boundary integrals are presented to show the efficiency and accuracy of the algorithm. In this respect, strongly singular and hypersingular integrals of potential flow problems are considered, followed by a supersingular integral which is extracted from the partial differentiation of a hypersingular integral with respect to the source point.  相似文献   

4.
This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton–Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.  相似文献   

5.
This research is focused on the development of a fast spectral method to accelerate the solution of three-dimensional hypersingular boundary integral equations of potential theory. Based on a Galerkin approximation, the fast Fourier transform and local interpolation operators, the proposed method is a generalization of the precorrected-FFT technique to deal with double-layer potential kernels, hypersingular kernels and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are included to illustrate the performance of the method. The US Government retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.  相似文献   

6.
7.
This paper is concerned with thermoelastic fracture mechanics, in three-dimensional linear elasticity, using hypersingular boundary integral equations (HBIEs). The HBIEs are regularized by employing modes of deformation (or “simple solutions”). In addition to rigid-body and linear displacement modes, which have been used before for isothermal linear elastic fracture mechanics (LEFM), a new mode is employed here. This new mode is a thermal one in which the body is elevated to a uniform temperature but fully constrained (i.e., zero prescribed displacements) on its bounding surface. An existing isothermal LEFM computer code called BES is extended in this work to include thermoelastic terms. Some numerical results are presented from this new code.  相似文献   

8.
Summary The evaluation of the gradient of the primary variable on the boundary for the Laplace problem, and the stress for the elasticity problem, involves hypersingular boundary integrals (HBIEs). To obtain any meaningful results from these integrals, an appropriate regularization scheme needs to be developed. We present an elegant way of calculation of gradients on the boundary of a body, starting from HBIEs regularized by using simple solutions or modes. Our method is currently limited to the calculation of gradients at regular points on the boundary at which the gradients of the primary variables are continous. Theiterative scheme developed in this paper is shown to be extremely robust for the calculations of the gradients. The method is tested on two Laplace problems and two problems in linear elasticity. This method does not involve any limiting process and can be easily extended to 3-dimensions. The approach developed in this paper can also be extended to other problems like acoustics and elastodynamics.  相似文献   

9.
A low-frequency fast multipole boundary element method (FMBEM) for 3D acoustic problems is proposed in this paper. The FMBEM adopts the explicit integration of the hypersingular integral in the dual boundary integral equation (BIE) formulation which was developed recently by Matsumoto, Zheng et al. for boundary discretization with constant element. This explicit integration formulation is analytical in nature and cancels out the divergent terms in the limit process. But two types of regular line integrals remain which are usually evaluated numerically using Gaussian quadrature. For these two types of regular line integrals, an accurate and efficient analytical method to evaluate them is developed in the present paper that does not use the Gaussian quadrature. In addition, the numerical instability of the low-frequency FMBEM using the rotation, coaxial translation and rotation back (RCR) decomposing algorithm for higher frequency acoustic problems is reported in this paper. Numerical examples are presented to validate the FMBEM based on the analytical integration of the hypersingular integral. The diagonal form moment which has analytical expression is applied in the upward pass. The improved low-frequency FMBEM delivers an algorithm with efficiency between the low-frequency FMBEM based on the RCR and the diagonal form FMBEM, and can be used for acoustic problems analysis of higher frequency.  相似文献   

10.
The quantity of data necessary in order to study traffic in dense urban areas through a traffic network, and the large volume of information that is provided as a result, causes managerial difficulties for the said model. A study of this kind is expensive and complex, with many sources of error connected to each step carried out. A simplification like the continuous medium is a reasonable approximation and, for certain dimensions of the actual problem, may be an alternative to be kept in mind. The hypotheses of the continuous model introduce errors comparable to those associated with geometric inaccuracies in the transport network, with the grouping of hundreds of streets in one same type of link and therefore having the same functional characteristics, with the centralization of all journey departure points and destinations in discrete centroids and with the uncertainty produced by a huge origin/destination matrix that is quickly phased out, etc. In the course of this work, a new model for characterizing traffic in dense network cities as a continuous medium, the diffusion–advection model, is put forward. The model is approached by means of the boundary element method, which has the fundamental characteristic of only requiring the contour of the problem to be discretized, thereby reducing the complexity and need for information into one order versus other more widespread methods, such as finite differences and the finite element method. On the other hand, the boundary elements method tends to give a more complex mathematical formulation. In order to validate the proposed technique, three examples in their fullest form are resolved with a known analytic solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The widely held notion that the use of standard conforming isoparametric boundary elements may not be used in the solution of hypersingular integral equations is investigated. It is demonstrated that for points on the boundary where the underlying field is C 1,α continuous, a class of rigorous nonsingular conforming BEM algorithms may be applied. The justification for this class of algorithms is interpreted in terms of some recent criticism. It is shown that the numerical integration in these conforming BEM algorithms using relaxed regularization represents a finite approximation to the standard two-sided Hadamard finite part interpretation of hypersingular integrals. It is also shown that the integration schemes in this class of algorithms are not based upon one-sided finite part interpretations. As a result, the attendant ambiguities associated with the incorrect use of the one-sided interpretations in boundary integral equations pose no problem for this class of algorithms. Additionally, the distinction is made between the analytic discontinuities in the field which place limitations on the applicability of the conforming BEM and the discontinuities resulting from the use of piece-wise C 1,α interpolations.  相似文献   

13.
The finite difference load method for shape design sensitivity analysis requires the calculation of stress and stress gradient on the boundary. In the standard boundary element method, the basic state variables-displacement and traction are continuous, and are considered as very accurate. However, the boundary stress and stress gradient, derived from the differentiation of the state variables and Hooke's law, are discontinuous and have relatively lower accuracy than the basic state variables. The hypersingular boundary integral equation is introduced in this paper to determine the stress and stress gradient in the design sensitivity analysis. The numerical examples demonstrate the accuracy of the design sensitivity using the hypersingular boundary elements.  相似文献   

14.
An improved form of the hypersingular boundary integral equation (BIE) for acoustic problems is developed in this paper. One popular method for overcoming non-unique problems that occur at characteristic frequencies is the well-known Burton and Miller (1971) method [7], which consists of a linear combination of the Helmholtz equation and its normal derivative equation. The crucial part in implementing this formulation is dealing with the hypersingular integrals. This paper proposes an improved reformulation of the Burton–Miller method and is used to regularize the hypersingular integrals using a new singularity subtraction technique and properties from the associated Laplace equations. It contains only weakly singular integrals and is directly valid for acoustic problems with arbitrary boundary conditions. This work is expected to lead to considerable progress in subsequent developments of the fast multipole boundary element method (FMBEM) for acoustic problems. Numerical examples of both radiation and scattering problems clearly demonstrate that the improved BIE can provide efficient, accurate, and reliable results for 3-D acoustics.  相似文献   

15.
A hypersingular boundary integral equation (HBIE) formulation, for axisymmetric linear elasticity, has been recently presented by de Lacerda and Wrobel [Int. J. Numer. Meth. Engng 52 (2001) 1337]. The strongly singular and hypersingular equations in this formulation are regularized by de Lacerda and Wrobel by employing the singularity subtraction technique. The present paper revisits the same problem. The axisymmetric HBIE formulation for linear elasticity is interpreted here in a ‘finite part’ sense and is then regularized by employing a ‘complete exclusion zone’. The resulting regularized equations are shown to be simpler than those by de Lacerda and Wrobel.  相似文献   

16.
This paper presents a gradient field representation using an analytical regularization of a hypersingular boundary integral equation for a two-dimensional time harmonic wave equation called the Helmholtz equation. The regularization is based on cancelation of the hypersingularity by considering properties of hypersingular elements that are adjacent to a singular node. Advantages to this regularization include applicability to evaluate corner nodes, no limitation for element size, and reduced computational cost compared to other methods. To demonstrate capability and accuracy, regularization is estimated for a problem about plane wave propagation. As a result, it is found that even at a corner node the most significant error in the proposed method is due to truncation error of non-singular elements in discretization, and error from hypersingular elements is negligibly small.  相似文献   

17.
Summary.  In this paper, we present a treatment of hypersingular integral equations, which have relevant applications in many problems of wave dynamics, elasticity and fluid mechanics with mixed boundary conditions. The main goal of the present work is the development of an efficient direct numerical collocation method. The paper also includes two examples taken from fracture mechanics and acoustics: a single crack in a linear isotropic elastic medium, and diffraction of a plane acoustic wave by a thin rigid screen. Received July 15, 2002; revised November 13, 2002 Published online: May 8, 2003 The paper has been supported by Italian Ministry for Instructions, University and Research (M.I.U.R.) through its national and local projects.  相似文献   

18.
The objective of the work presented in this paper is the formulation, implementation and validation of an algorithm for computing the acoustic sensitivity with respect to the unequal impedance boundary conditions in an indirect boundary element method (IBEM). The IBEM integral equations are considered for all possible acoustic boundary conditions including velocity, pressure, unequal impedance, and simultaneous velocity and unequal impedance boundary conditions. The numerical system of equations is developed using a variational approach. The sensitivity formulation is based on analytically differentiating the system of equations formed by the variational approach with respect to the unequal acoustic impedance boundary conditions. Numerical sensitivity results obtained using the formulation developed in this paper are compared to analytical solutions in order to validate the new formulation.  相似文献   

19.
A finite element constructed on the basis of boundary integral equations is proposed. This element has a flexible shape and arbitrary number of nodes. It also has good approximation properties. A procedure of constructing an element stiffness matrix is demonstrated first for one-dimensional case and then for two-dimensional steady-state heat conduction problem. Numerical examples demonstrate applicability and advantages of the method. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we consider singular and hypersingular integral equations associated with 2D boundary value problems defined on domains whose boundaries have piecewise smooth parametric representations. In particular, given any (polynomial) local basis, we show how to compute efficiently all integrals required by the Galerkin method. The proposed numerical schemes require the user to specify only the local polynomial degrees; therefore they are quite suitable for the construction of p‐ and hp versions of Galerkin BEM. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号