首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A no-wait job shop (NWJS) describes a situation where every job has its own processing sequence with the constraint that no waiting time is allowed between operations within any job. A NWJS problem with the objective of minimizing total completion time is a NP-hard problem and this paper proposes a hybrid genetic algorithm (HGA) to solve this complex problem. A genetic operation is defined by cutting out a section of genes from a chromosome and treated as a subproblem. This subproblem is then transformed into an asymmetric traveling salesman problem (ATSP) and solved with a heuristic algorithm. Subsequently, this section with new sequence is put back to replace the original section of chromosome. The incorporation of this problem-specific genetic operator is responsible for the hybrid adjective. By doing so, the course of the search of the proposed genetic algorithm is set to more profitable regions in the solution space. The experimental results show that this hybrid genetic algorithm can accelerate the convergence and improve solution quality as well.  相似文献   

2.
The no-wait job shop scheduling problem is a well-known NP-hard problem and it is typically decomposed into timetabling subproblem and sequencing subproblem. By adopting favorable features of the group search technique, a hybrid discrete group search optimizer is proposed for finding high quality schedules in the no-wait job shops with the total flow time criterion. In order to find more promising sequences, the producer operator is designed as a destruction and construction (DC) procedure and an insertion-based local search, the scrounger operator is implemented by differential evolution scheme, and the ranger operator is designed by hybridizing best insert moves. An efficient initialization scheme based on Nawaz–Enscore–Ham (NEH) heuristic is designed to construct the initial population with both quality and diversity. A speed-up method is developed to accelerate the evaluation of the insertion neighborhood. Computational results based on well-known benchmark instances show that the proposed algorithm clearly outperforms a hybrid differential evolution algorithm and an iterated greedy algorithm. In addition, the proposed algorithm is comparable to a local search method based on optimal job insertion, especially for large-size instances.  相似文献   

3.
In this paper we consider the no-wait job shop problem with a makespan objective. This problem has usually been addressed by its decomposition into a sequencing and a timetabling problem. Here, first we focus on the timetabling problem and take advantage of the symmetry of the problem in order to suggest a new timetabling procedure. Secondly, we suggest embedding this timetabling into a recent metaheuristic named complete local search with memory.  相似文献   

4.
This paper deals with the no-wait job shop scheduling problem resolution. The problem is to find a schedule to minimize the makespan (\(C_{max}\)), that is, the total completeness time of all jobs. The no-wait constraint occurs when two consecutive operations in a job must be processed without any waiting time either on or between machines. For this, we have proposed two different resolution methods, the first is an exact method based on the branch-and-bound algorithm, in which we have defined a new technique of branching. The second is a particular swarm optimization (PSO) algorithm, extended from the discrete version of PSO. In the proposed algorithm, we have defined the particle and the velocity structures, and an efficient approach is developed to move a particle to the new position. Moreover, we have adapted the timetabling procedure to find a good solution while respecting the no-wait constraint. Using the PSO method, we have reached good results compared to those in the literature.  相似文献   

5.
This paper examines the m machine no-wait flow shop problem with setup times of a job separated from its processing time. The performance measure considered is the makespan. The hybrid metaheuristic Evolutionary Cluster Search (ECS_NSL) proposed in Nagano et al. (2012) is extended to solve the scheduling problem. The ECS_NSL performance is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the ECS_NSL regarding the solution quality.  相似文献   

6.
The expanded job-shop scheduling problem (EJSSP) is a practical production scheduling problem with processing constraints that are more restrictive and a scheduling objective that is more general than those of the standard job-shop scheduling problem (JSSP). A hybrid approach involving neural networks and genetic algorithm (GA) is presented to solve the problem in this paper. The GA is used for optimization of sequence and a neural network (NN) is used for optimization of operation start times with a fixed sequence.

After detailed analysis of an expanded job shop, new types of neurons are defined to construct a constraint neural network (CNN). The neurons can represent processing restrictions and resolve constraint conflicts. CNN with a gradient search algorithm, gradient CNN in short, is applied to the optimization of operation start times with a fixed processing sequence. It is shown that CNN is a general framework representing scheduling problems and gradient CNN can work in parallel for optimization of operation start times of the expanded job shop.

Combining gradient CNN with a GA for sequence optimization, a hybrid approach is put forward. The approach has been tested by a large number of simulation cases and practical applications. It has been shown that the hybrid approach is powerful for complex EJSSP.  相似文献   


7.
Flexible job shop scheduling problem (FJSSP) is generalization of job shop scheduling problem (JSSP), in which an operation may be processed on more than one machine each of which has the same function. Most previous researches on FJSSP assumed that all jobs to be processed are available at the beginning of scheduling horizon. The assumption, however, is always violated in practical industries because jobs usually arrive over time and can not be predicted before their arrivals. In the paper, dynamic flexible job shop scheduling problem (DFJSSP) with job release dates is studied. A heuristic is proposed to implement reactive scheduling for the dynamic scheduling problem. An approach based on gene expression programming (GEP) is also proposed which automatically constructs reactive scheduling policies for the dynamic scheduling. In order to evaluate the performance of the reactive scheduling policies constructed by the proposed GEP-based approach under a variety of processing conditions three factors, such as the shop utilization, due date tightness, problem flexibility, are considered in the simulation experiments. The scheduling performance measure considered in the simulation is the minimization of makespan, mean flowtime and mean tardiness, respectively. The results show that GEP-based approach can construct more efficient reactive scheduling policies for DFJSSP with job release dates under a big range of processing conditions and performance measures in the comparison with previous approaches.  相似文献   

8.
This paper deals with a stochastic group shop scheduling problem. The group shop scheduling problem is a general formulation that includes the other shop scheduling problems such as the flow shop, the job shop and the open shop scheduling problems. Both the release date of each job and the processing time of each job on each machine are random variables with known distributions. The objective is to find a job schedule which minimizes the expected makespan. First, the problem is formulated in a form of stochastic programming and then a lower bound on the expected makespan is proposed which may be used as a measure for evaluating the performance of a solution without simulating. To solve the stochastic problem efficiently, a simulation optimization approach is developed that is a hybrid of an ant colony optimization algorithm and a heuristic algorithm to generate good solutions and a discrete event simulation model to evaluate the expected makespan. The proposed approach is tested on instances where the random variables are normally, exponentially or uniformly distributed and gives promising results.  相似文献   

9.
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm–Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality.  相似文献   

10.
Nowadays, distributed scheduling problem is a reality in many companies. Over the last years, an increasingly attention has been given to the distributed flow shop scheduling problem and the addition of constraints to the problem. This article introduces the distributed no-wait flow shop scheduling problem with sequence-dependent setup times and maintenance operations to minimize makespan. A mixed-integer linear programming (MILP) is to mathematically describe the problem and heuristic procedures to incorporate maintenance operations to job scheduling are proposed. An Iterated Greedy with Variable Search Neighborhood (VNS), named IG_NM, is proposed to solve small and large instances with size of 4,800 and 13,200 problems, respectively. Computational experiments were conducted to evaluate the performance of IG_NM in comparison with MILP and the most recent methods of literature of distributed flow shop scheduling problems. Statistical results show that in the trade-off between effectiveness and efficiency the proposed IG_NM outperformed other metaheuristics of the literature.  相似文献   

11.
具有线性恶化加工时间的调度问题   总被引:11,自引:0,他引:11  
讨论了工件具有线性恶化加工时间的调度问题.在这类问题中,工件的恶化函数为线性 函数.对单机调度问题中目标函数为极小化最大完工时间加权完工时间和,最大延误以及最大费 用等问题分别给出了最优算法.对两台机器极小化最大完工时间的Flowshop问题,证明了利用 Johnson规则可以得到最优调度.对于一般情况,如果同一工件的工序的加工时间均相等,则 Flowshop问题可以转化为单机问题.  相似文献   

12.
Job shop scheduling is one of the most intriguing and potentially useful problems in Operations Research. It is also a very difficult problem to solve. In this article, we discuss a hybrid approach we have developed which automates the scheduling functions in a plant materials management department. The system performs multi-stage time phased materials planning calculations, while performing capacity checks and job sequencing. The scheduling algorithm performs a heuristic reduction of the n/m/Smin problem to a set of n/l/Smin problems which are solved optimally. The heuristic reduction and optimization algorithms are described. Design criteria which made implementation possible in a plant setting are also discussed.  相似文献   

13.
A reentrant hybrid flow shop, typically found in the electronics industry, is an extended system of the ordinary flow shop in such a way that there exist one or more parallel machines at each serial stage and each job has the reentrant product flow, i.e., a job may visit a stage several times. Among the operational issues in reentrant hybrid flow shops, we focus on the scheduling problem that determines the allocation of jobs to the machines at each stage as well as the sequence of the jobs assigned to each machine. Unlike the theoretical approach on reentrant hybrid flow shop scheduling, we suggest a real-time scheduling mechanism with a decision tree when selecting appropriate dispatching rules. The decision tree, one of the commonly used data mining techniques, is adopted to eliminate the computational burden required to carry out simulation runs to select dispatching rules. To illustrate the mechanism suggested in this study, a case study was performed on a thin film transistor-liquid crystal display (TFT-LCD) manufacturing line and the results are reported for various system performance measures.  相似文献   

14.
The paper considers the dynamic job shop scheduling problem (DJSSP) with job release dates which arises widely in practical production systems. The principle characteristic of DJSSP considered in the paper is that the jobs arrive continuously in time and the attributes of the jobs, such as the release dates, routings and processing times are not known in advance, whereas in the classical job shop scheduling problem (CJSSP), it is assumed that all jobs to be processed are available at the beginning of the scheduling process. Reactive scheduling approach is one of the effective approaches for DJSSP. In the paper, a heuristic is proposed to implement the reactive scheduling of the jobs in the dynamic production environment. The proposed heuristic decomposes the original scheduling problem into a number of sub problems. Each sub problem, in fact, is a dynamic single machine scheduling problem with job release dates. The scheduling technique applied in theproposed heuristic is priority scheduling, which determines the next state of the system based on priority values of certain system elements. The system elements are prioritized with the help of scheduling rules (SRs). An approach based on gene expression programming (GEP) is also proposed in the paper to construct efficient SRs for DJSSP. The rules constructed by GEP are evaluated in the comparison of the rules constructed by GP and several prominent human made rules selected from literatures on extensive problem sets with respect to various measures of performance.  相似文献   

15.
针对无等待Job Shop问题,采用量子粒子群优化算法对其进行了求解。该算法采用位置矢量的编码方式,全左移验证方式计算适应值。最后通过MATLAB对实例问题的仿真测试,量子粒子群优化算法不仅收敛速度快,而且还具有较好的求解质量。  相似文献   

16.
This paper considers a generalization of the permutation flow shop problem that combines the scheduling function with the planning stage. In this problem, each work center consists of parallel identical machines. Each job has a different release date and consists of ordered operations that have to be processed on machines from different machine centers in the same order. In addition, the processing times of the operations on some machines may vary between a minimum and a maximum value depending on the use of a continuously divisible resource. We consider a nonregular optimization criterion based on due dates which are not a priori given but can be fixed by a decision-maker. A due date assignment cost is included into the objective function. For this type of problems, we generalize well-known approaches for the heuristic solution of classical problems and propose constructive algorithms based on job insertion techniques and iterative algorithms based on local search. For the latter, we deal with the design of appropriate neighborhoods to find better quality solution. Computational results for problems with up to 20 jobs and 10 machine centers are given.Scope and purposeTraditional research to solve multi-stage scheduling problems has focused on regular measures of performance based on a single criterion and assumes that several decisions related to due dates and processing times have already been made. However, in many industrial scheduling practices, managers develop schedules based on multicriteria and have to decide the due dates and processing times as part of the scheduling activities. Further, in practical scheduling situations, there are multiple machines at each stage and the objective function often reflects the total cost of processing, earliness and tardiness. Such scheduling problems require significantly more effort in finding acceptable solutions and hence have not received much attention in the literature. For this reason, this paper considers one such hybrid flow shop scheduling problem involving nonregular measures of performance, controllable processing times, and assignable due dates. We combine and generalize the existing approaches for the classical flow shop problem to the problem under consideration. Computational experiments are used to evaluate the utility of the proposed algorithms for the generalized scheduling problems. Brah and Hunsucker (European Journal of Operational Research 1991;51:88–99) and Nowicki and Smutnicki (European Journal of Operational Research 1998;106:226–253) describe branch and bound and tabu search algorithms for the approach used in the development of heuristic algorithms can also be adapted to several other complex practical scheduling problems.  相似文献   

17.
A data mining based approach to discover previously unknown priority dispatching rules for job shop scheduling problem is presented. This approach is based on seeking the knowledge that is assumed to be embedded in the efficient solutions provided by the optimization module built using tabu search. The objective is to discover the scheduling concepts using data mining and hence to obtain a set of rules capable of approximating the efficient solutions for a job shop scheduling problem (JSSP). A data mining based scheduling framework is presented and implemented for a job shop problem with maximum lateness as the scheduling objective.  相似文献   

18.
主要讨论某钢铁公司冷轧厂热处理车间冷卷热处理生产调度问题,将其归结为一类不允许等待的混合流水车间排序问题进行研究,建立相应的数学模型,设计求解其模型的启发式算法。  相似文献   

19.
针对工件动态到达的零等待流水线调度问题,提出一种基于工件的滚动策略.证明了在该策略下全局调度性能随着局部调度的逐步滚动可得到不断改善.将该策略与基于差分进化的混合算法有机结合,能有效处理动态零等待流水线调度问题.最后通过实验验证了所提出策略和算法的有效性.  相似文献   

20.
This paper show that fuzzy set theory can be useful in modelling and solving flow shop scheduling problems with uncertain processing times and illustrates a methodology for solving job sequencing problem which the opinions of experts greatly disagree in each processing time. Triangular fuzzy numbers (TFNs) are used to represent the processing times of experts. And the comparison methods based on the dominance property is sued to determine the ranking of the fuzzy numbers. By the dominance criteria, for each job, a major TFN and a minor TFN are selected and a pessimistic sequence with major TFNs and an optimistic sequence with minor TFNs are computer. Branch and bound algorithm for makespan in three-machine flow shop is utilized to illustrate the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号