首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold-bonded fly ash aggregate concrete with fly ash as part of binder or fine aggregate facilitates high volume utilization of fly ash in concrete with minimum energy consumption. This paper investigates the influence of fly ash on strength and sorption behaviour of cold-bonded fly ash aggregate concrete due to partial replacement of cement and also as replacement material for sand. While cement replacement must be restricted based on the compressive strength requirement at desired age, replacement of sand with fly ash appears to be advantageous from early days onwards with higher enhancement in strength and higher utilization of fly ash in mixes of lower cement content. Microstructure of concrete was examined under BSEI mode. Replacement of sand with fly ash is effective in reducing water absorption and sorptivity attributable to the densification of both matrix and matrix–aggregate interfacial bond. Cold-bonded fly ash aggregate concrete with a cement content of 250 kg/m3, results in compressive strength of about 45 MPa, with a total inclusion of around 0.6 m3 of fly ash in unit volume of concrete.  相似文献   

2.
This study investigates the abrasion–erosion resistance of high-strength concrete (HSC) mixtures in which cement was partially replaced by four kinds of replacements (15%, 20%, 25% and 30%) of class F fly ash. The mixtures containing ordinary Portland cement were designed to have 28 days compressive strength of approximately 40–80 MPa. Specimens were subjected to abrasion–erosion testing in accordance with ASTM C1138. Experimental results show that the abrasion–erosion resistances of fly ash concrete mixtures were improved by increasing compressive strength and decreasing the ratio of water-to-cementitious materials. The abrasion–erosion resistance of concrete with cement replacement up to 15% was comparable to that of control concrete without fly ash. Beyond 15% cement replacement, fly ash concrete showed lower resistance to abrasion–erosion compared to non-fly ash concrete. Equations were established based on effective compressive strengths and effective water-to-cementitious materials ratios, which were modified by cement replacement and developed to predict the 28- and 91-day abrasion–erosion resistance of concretes with compressive strengths ranging from approximately 30–100 MPa. The calculation results are compared favorably with the experimental results.  相似文献   

3.
This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.  相似文献   

4.
An experimental investigation was conducted using an air-entraining agent and pozzolans such as silica fume and fly ash, to meet the design strengths 50 and 60 MPa, as well as frost resistance to 300 cycles of freezing and thawing. Among a series of concretes of grade 50 or 60 MPa, only a small part could resist 300 cycles of freezing and thawing. It was demonstrated that frost resistance might be independent on strength of concrete. By means of mercury intrusion porosimeter, the pore structure characteristics of six concretes were identified. Air entrainment, no matter whether the pozzolans were used, caused an increase in cumulative pore volume, and also an increase in the mean pore size. It is revealed that, as to concrete at a 0.32 water/binder ratio, air entrainment should be a main approach to enhance frost resistance, although the pozzolans could be used to increase long-term strength of concrete.  相似文献   

5.
This investigation studied the effect of W/C ratio on covering depth required against the corrosion of embedded steel of fly ash concrete in marine environment up to 4-year exposure. Fly ash was used to partially replace Portland cement type I at 0%, 15%, 25%, 35%, and 50% by weight of cementitious material. Water to cementitious material ratios (W/C) of fly ash concretes were varied at 0.45, 0.55, and 0.65. The 200-mm concrete cube specimens were cast and steel bars with 12-mm diameter and 50 mm in length were inserted in the concrete with the covering depth of 10, 20, 50, and 75 mm. The specimens were cured in water for 28 days, and then placed to the tidal zone of marine environment in the Gulf of Thailand. Subsequently, the concrete specimens were tested for the compressive strength, chloride penetration profile and corrosion of embedded steel bar after being exposed to tidal zone for 2, 3, and 4 years. The results showed that the concrete mixed with Portland cement type I exhibited higher rate of the chloride penetration than the fly ash concrete. The chloride penetration of fly ash concrete was comparatively low and decreased with the increasing of fly ash content. The increase of fly ash replacement and the decrease of W/C ratio could reduce the covering depth required for the initial corrosion of the steel bar. Interestingly, fly ash concretes with 35% and 50% cement replacement and having W/C ratio of 0.65 provided better corrosion resistance at 4-year exposure than the control concrete with W/C ratio of 0.45. In addition, the covering depth of concrete with compressive strength of 30 MPa (W/C ratio of 0.65) could be reduced from 50 to 30 mm by the addition of fly ash up to 50%.  相似文献   

6.
This paper presents the results of an experimental investigation on the properties of fly ash concrete incorporating either hydrated lime or silica fume to improve the early strength of concrete. Test results indicated that the addition of lime and silica fume improved the early age compressive strength of fly ash concrete. The inclusion of silica fume was also found to increase the 28 days strength significantly. The air permeability of concrete containing lime and silica fume either decreased or remained almost the same when compared to the concrete without these. The addition of lime and silica fume also improved the sorptivity of concrete.Through the use of differential scanning calorimetry and thermogravimetric analysis (DSC/TG), it was demonstrated that the addition of hydrated lime increased the Ca(OH)2 content; whereas the addition of silica fume decreased the Ca(OH)2 content in the cement paste. The mercury intrusion porosimetry (MIP) data confirmed the beneficial action of hydrated lime and silica fume, towards decreasing the total pore volume of fly ash cement paste.  相似文献   

7.
Fly ashes are obtained from thermal power plants and they are pozzolanic materials, which can act as partial replacement material for both portland cement and fine aggregate. With their economical advantages and potential for improving fresh and hardened concrete performance, they have some benefits for using in concrete industry. In this study, the objective was to find the efficiency factors of Turkish C and F-type fly ashes and to compare their properties. Three different cement dosages were used (260, 320, 400 kg/m3), two different ratios (10% and 17%) of cement reduced from the control concretes and three different ratios (depending on cement reduction ratio) of fly ash were added into the mixtures. At the ages of 28 and 90 days, compressive strength, modulus of elasticity and ultrasound velocity tests were carried out. From the compressive strength results, the k efficiency factors of C and F-type fly ashes were obtained. As a result, it is seen that efficiency factors of the concrete produced by the replacement of F and C type fly ashes with cement increase with the increase in cement dosage and concrete age.  相似文献   

8.
In Malaysia, oil palm shell (OPS) is an agricultural solid waste originating from the palm oil industry. In this investigation old OPS was used for production of high strength lightweight concrete (HSLC). The density, air content, workability, cube compressive strength and water absorption were measured. The effect of five types of curing conditions on 28-day compressive strength was studied. The test results showed that by incorporating limestone powder and without it, it is possible to produce the OPS concretes with 28-day compressive strength of about 43–48 MPa and dry density of about 1870–1990 kg/m3. The compressive strength of OPS HSLC is sensitive to the lack of curing. The water absorption of these concretes is in the range of good concretes.  相似文献   

9.
About 10 million tonnes of fly ash are produced yearly as waste from coal fired thermal power plants in Turkey. Only a small portion of this waste is utilized as a raw material in the production of cement and concrete. In this study, Seyitömer power plant fly ash was investigated in the production of light weight bricks. Fly ash, sand and hydrated lime mixtures were steam autoclaved under different test conditions to produce brick samples. An optimum raw material composition was found to be a mixture of 68% fly ash, 20% sand and 12% hydrated lime. The optimum brick forming pressure was 20 MPa. The optimum autoclaving time and autoclaving pressure were found 6 h and 1.5 MPa, respectively. The compressive strength, unit volume weight, water absorption and thermal conductivity of the fly ash–sand–lime bricks obtained under optimum test conditions are 10.25 MPa, 1.14 g/cm3, 40.5% and 0.34 W  m−1 K−1 respectively. The results of this study suggested that it was possible to produce good quality light weight bricks from the fly ash of Seyitömer power plant.  相似文献   

10.
This work investigated geopolymeric lightweight concretes based on binders composed of metakaolin with 0% and 25% fly ash, activated with 15.2% of Na2O using sodium silicate of modulus SiO2/Na2O = 1.2. Concretes of densities of 1200, 900 and 600 kg/m3 were obtained by aeration by adding aluminium powder, in some formulations lightweight aggregate of blast furnace slag was added at a ratio binder:aggregate 1:1; curing was carried out at 20 and 75 °C. The compressive and flexural strength development was monitored for up to 180 days. The strength diminished with the reduction of the density and high temperature curing accelerated strength development. The use of the slag had a positive effect on strength for 1200 kg/m3 concretes; reducing the amount of binder used. The thermal conductivity diminished from 1.65 to 0.47 W/mK for densities from 1800 to 600 kg/m3. The microstructures revealed dense cementitious matrices conformed of reaction products and unreacted metakaolin and fly ash. Energy dispersive spectroscopy and X-ray diffraction showed the formation of amorphous silicoaluminate reaction products.  相似文献   

11.
A judicious use of resources, by using by-products and waste materials, and a lower environmental impact, by reducing carbon dioxide emission and virgin aggregate extraction, allow to approach sustainable building development. Recycled aggregate concrete (RAC) containing supplementary cementitious materials (SCM), if satisfactory concrete properties are achieved, can be an example of such sustainable construction materials.In this work concrete specimens were manufactured by completely replacing fine and coarse aggregates with recycled aggregates from a rubble recycling plant. Also RAC with fly ash (RA + FA) or silica fume (RA + SF) were studied.Concrete properties were evaluated by means of compressive strength and modulus of elasticity in the first experimental part. In the second experimental part, compressive and tensile splitting strength, dynamic modulus of elasticity, drying shrinkage, reinforcing bond strength, carbonation, chloride penetration were studied. Satisfactory concrete properties can be developed with recycled fine and coarse aggregates with proper selection and proportioning of the concrete materials.  相似文献   

12.
The paper presented herein was carried out to investigate the permeability characteristics of self-compacting rubberized concretes with and without fly ash. At a water–cementitious material (w/cm) ratio of 0.35, the self-compacting concretes (SCCs) were produced by replacing the fine aggregate with four designated crump rubber contents of 0%, 5%, 15%, and 25% by fine aggregate volume. Moreover, the SCCs with fly ash were produced by partial substitution of cement with fly ash at varying amounts of 20% to 60%. Totally, 16 concrete mixtures were cast and tested for permeability related properties such as chloride ion permeability, water sorptivity, and water absorption. The tests were conducted at 28 and 90 days after casting. Tests results revealed that using the crumb rubber aggravated all of the measured properties of self-compacting rubberized concretes (SCRCs) without fly ash. However, with the combined use of the crump rubber and fly ash, the concretes had better resistance to the chloride ion permeability, water sorptivity, and water absorption.  相似文献   

13.
Statistical relationship between various strengths of tile adhesives in which cement or sand was partially replaced with fly ash was studied. A low-lime fly ash was used in five different replacement levels from 5% to 30% by weight of either cement or sand. The tensile adhesion, flexural and compressive strengths of adhesives were determined at 2, 7 and 28 days. In small substitution levels, sand replacement increased the tensile adhesion strength. No strong relationship was found between tensile adhesion strength and flexural or compressive strength of the specimens in which the fly ash was used as sand replacement (r < 0.659). Strong relationship was observed between the same properties when fly ash was used as cement replacement (r > 0.896). Flexural and compressive strength values showed quite strong relationship (r > 0.949). This may be due to the fact that both of these strength values were obtained on the same specimens.  相似文献   

14.
This study investigated the behavior of apparent electrical resistivity of concrete mixes with the addition of rice husk ash using Wenner’s four electrode method. Tests included compressive strength, porosity and electrical conductivity of the pore solution. The contents of rice husk ash tested were 10%, 20% and 30% and results were compared with a reference mix with 100% Portland cement and two other binary mixes with 35% fly ash and 50% blast furnace slag. Higher contents of rice husk ash resulted in higher electrical resistivity, which exceeded those of all other samples. However, for compressive strength levels between 40 MPa and 70 MPa, the mix with 50% blast furnace slag showed the best combination of cost and performance.  相似文献   

15.
This paper presents a study on the fresh and mechanical properties of a fiber reinforced self-compacting concrete incorporating high-volume fly ash that does not meet the fineness requirements of ASTM C 618. A polycarboxylic-based superplasticizer was used in combination with a viscosity modifying admixture. In mixtures containing fly ash, 50% of cement by weight was replaced with fly ash. Two different types of steel fibers were used in combination, keeping the total fiber content constant at 60 kg/m3. Slump flow time and diameter, V-funnel, and air content were performed to assess the fresh properties of the concrete. Compressive strength, splitting tensile strength, and ultrasonic pulse velocity of the concrete were determined for the hardened properties. The results indicated that high-volume coarse fly ash can be used to produce fiber reinforced self-compacting concrete, even though there is some reduction in the concrete strength because of the use of high-volume coarse fly ash.  相似文献   

16.
In order to assure the outer concrete of Longtan dam in China possesses excellent of frost resistance, the losses of strength, mass and air void characteristics of roller compacted concrete (RCC) containing fly ash, superplasticizer and a novel MgO-bearing expansive agent (HNM) were studied using the freezing–thawing method ASTM C666. The results show that there is a linear correlation between strength and mass losses in RCC subjected to cycles of freezing and thawing.There is a relationship between the air void spacing factor and the frost resistance of RCC. However, for RCC containing fly ash and superplasticizer a spacing factor of 0.25 mm is not necessary. Using a water:binder ratio of 0.48 in RCC containing 50% fly ash and 8% HNM a durability factor of over D300 can be achieved provided the spacing factor is less than 0.4 mm.  相似文献   

17.
In this study, the effect of high temperature on compressive and splitting tensile strength of lightweight concrete containing fly ash was investigated experimentally and statistically. The mixes incorporating 0%, 10%, 20% and 30% fly ash were prepared. After being heated to temperatures of 200, 400 and 800 °C, respectively, the compressive and splitting tensile strength of lightweight concrete was tested. This article adopts Taguchi approach with an L16 (45) to reduce the numbers of experiment. Two control factors (percentage of fly ash and heating degree) for this study were used. The level of importance of these parameters on compressive and splitting tensile strength was determined by using analysis of variance (ANOVA) method.  相似文献   

18.
This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50 MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag, which make the pozzolanic reaction, were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30 MPa at 7 days, and stable design strength was acquired at 28 days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.  相似文献   

19.
Pozzolanas are readily available for use in concrete in the local markets for strength and/or durability enhancement. Although safety and security against disasters are not new, they still presuming a challenge. For instance, the fire resistive properties of concrete are of prime interest.Through this work, the effect of different kinds of pozzolana on the fire resistive properties of concrete was studied. Four types of pozzolana were incorporated into the concrete mixtures, i.e. metakaolin (MK), silica fume (SF), fly ash (FA), and ground granulated blast furnace slag (GGBS). Each of the employed pozzolana was used in two ratios: 10% and 20%, either in the form of cement replacement or as an addition without affecting the cement content. A total of 17 mixes were cast.For all mixtures, compressive strength is evaluated after 28 days of water curing. The mixtures’ compressive strengths were also evaluated after exposure to elevated temperatures: 200 °C, 400 °C, 600 °C, and 800 °C. The residual compressive strengths after heat exposure are evaluated. The formed cementitious phases after incorporation of pozzolana and the heat-induced transformations are investigated via the X-ray diffraction technique (XRD).Test results demonstrate the impact of each type of the employed pozzolana on the heat resistive properties of concrete in addition to their influence on the strength development of the investigated mixes. Therefore, a decision could be made regarding optimizing the benefits specific to each type of pozzolana and their employment method.  相似文献   

20.
Mechanical characteristics of Fibre Reinforced High Performance Concrete (FR-HPC) subjected to high temperatures were experimentally investigated in this paper. Three different concretes were prepared: a normal strength concrete (NSC) and two High Performance Concretes (HPC1 and HPC2). Fibre reinforced concretes were produced by addition of steel or polypropylene fibres in the above mixtures at dosages of 40 kg/m3 and 5 kg/m3, respectively. A total of nine concrete mixtures were produced and fibres were added in six of them. At the age of 120 days specimens were heated to maximum temperatures of 100, 300, 500 and 700 °C. Specimens were then allowed to cool in the furnace and tested for compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity. Reference tests were also performed at air temperature (20 °C). Residual strength of NSC and HPC1 was reduced almost linearly up to 700 °C and 500 °C, respectively whereas the residual strength of HPC2 was sharply reduced up to 300 °C. Explosive spalling was observed on both HPC. Addition of steel fibres increased the residual strength up to 300 °C, but spalling still occurred in HPC1 and HPC2. Such an explosive behavior was not observed when polypropylene fibres were added in the mixtures; however, in this case the residual mechanical characteristics of all concretes were significantly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号