首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
廖莎莎 《红外与激光工程》2022,51(5):20210372-1-20210372-6
红外成像是现代战场侦察的重要手段,基于红外图像的目标识别技术可为情报解译提供重要支撑。针对红外图像目标识别,提出基于筛选深度特征的方法。设计适当结构的ResNet对红外图像进行特征学习,对于每个卷积层的输出特征图进行矢量化处理,获得相应的特征矢量。针对各个特征图的深度特征矢量,基于斯皮尔曼等级相关系数评价它们与原始图像的相关性。然后,通过门限判决算法选取若干具有高相关性的深度特征。经过筛选得到的深度特征可剔除了不必要的冗余成分,从而提升后续分类的精度和稳健性。采用联合稀疏表示模型对筛选得到的若干深度特征进行表征和分类,最终获取待识别样本的所属类别。因此,方法可有效结合ResNet多层次深度特征的鉴别力,从而提高最终的识别性能。实验在公开的中波红外目标图像数据集(MWIR)开展,利用原始测试样本、模拟噪声样本和模拟遮挡样本对方法性能进行测试和分析。实验结果表明:相比现有的部分红外目标识别方法,提出方法可取得更强的有效性和稳健性。  相似文献   

2.
多视角红外图像目标识别方法   总被引:1,自引:1,他引:1  
赵璐  熊森 《红外与激光工程》2021,50(11):20210206-1-20210206-6
随着红外传感器的性能提升和应用普及,获取同一场景下同一目标的多视角图像成为可能。为此,提出联合多视角红外图像的目标识别方法。首先对多视角红外图像进行聚类分析,获取多个视角子集。在每个视角子集中,红外图像具有较强的相关性。对于不同的视角子集,它们相对独立。为充分利用这种相关性和独立性,采用联合稀疏表示(JSR)对单个视角子集进行决策。特别地,对于只包含一个视角的子集,则直接采用经典的稀疏表示分类(SRC)进行处理。对于不同视角子集获取的决策结果,基于线性加权的思想进行融合处理,并根据融合后的决策变量判决多视角红外图像所属的目标类别。因此,所提方法在分析多视角红外图像内在关联性的基础上,分别对局部相关性和整体的独立性进行考察,并通过决策层的融合将两者融为一体,提高了最终决策的可靠性。实验中,在采集的多类交通车辆红外图像上进行识别,分别在原始图像、加噪声图像以及部分遮挡图像上对方法进行测试和验证,经过对比分析验证了提出方法的有效性。  相似文献   

3.
采用Res-Net学习合成孔径雷达(SyntheticApertureRadar,SAR)图像多层次深度特征,并基于结构相似性准则选取其中的有效成分。通过联合稀疏表示对选取的多层次深度特征进行表征和分析,判定输入样本的目标类别。利用MSTAR数据集进行测试,该方法对10类目标的识别率达到99.02%,对于俯仰角差异以及噪声干扰的稳健性更优。该方法能够有效结合Res-Net和联合稀疏表示在特征提取和分类决策方面的优势,提升识别方法的整体性能。  相似文献   

4.
杨棉绒  牛丽平 《红外与激光工程》2022,51(4):20210309-1-20210309-6
红外传感技术有效解决了夜间观测的难题,成为现代战场侦察的重要手段之一。不断提升基于红外图像的目标识别能力是实施精确打击、态势感知的有力途径。针对红外图像识别问题,提出基于轻量级梯度提升机(Light Gradient Boosting Machine, LGBM)的Zernike特征选取算法,并结合稀疏表示分类器(Sparse Representation-based Classification, SRC)完成目标类别确认。首先,基于红外图像中的目标区域提取多阶Zernike矩特征,表征待识别目标的本质特性;其次,采用LGBM特征选择算法对多阶矩特征进行二次筛选,减少冗余的同时提高特征的针对性;最后,基于SRC对最终选择的Zernike矩特征矢量进行分类。该方法通过LGBM的特征选择有效提高了最终特征的有效性,同时降低了分类的计算复杂度,有利于提高整体识别性能。采用公开的中波红外目标图像数据集(MWIR)开展验证实验,对10类典型军事目标进行区分识别。实验分别在原始样本、噪声干扰样本以及部分缺失样本三种条件下进行并与几类现有红外目标识别方法进行对比讨论。结果表明:所提方法可取得更优性能,证明其有效性。  相似文献   

5.
杨雅志  李骏 《红外与激光工程》2021,50(12):20210165-1-20210165-7
红外成像是夜间观测的重要手段,在军事民用领域都有着广泛运用。针对红外图像目标分类问题,将单演信号引入用于特征提取,用于对目标特性的分析。经过单演信号处理后的红外图像可用幅度、相位和方位三个成分描述。对于每一个成分的多尺度结果,采用矢量串接以及降采样结合的方式构建单一特征矢量。最终构造得到的三个特征矢量能够反映目标的多层次特性。采用联合稀疏表示作为三种单演信号特征矢量的表征模型。在重构过程中,充分利用三类特征之间的关联性从而提高整体重构精度。在不同类别上按照联合稀疏表示的求解结果计算对于测试样本的重构误差,进而决定测试样本的类别信息。该方法通过单演信号获取红外图像中目标的多层次特性,基于联合稀疏表示模型对这些特征进行充分分析和挖掘,从而提高目标分类的精度和稳健性。实验基于公开的中波红外(Medium wave infrared,MWIR)图像数据集开展,分别对原始样本、模拟噪声样本以及模拟遮挡样本进行分类。根据实验结果,并与几类现有算法对比,反映了所提方法对于红外图像目标分类问题能够取得更高的有效性和稳健性。  相似文献   

6.
一种联合阴影和目标区域图像的SAR目标识别方法   总被引:1,自引:0,他引:1       下载免费PDF全文
地面目标的SAR图像中除了包含目标散射回波形成的区域,还包括由目标遮挡地面形成的阴影区域。但是由于这两种区域中的图像特性不相同,所以传统的SAR图像自动目标识别主要利用目标区域信息进行目标识别,或者单独使用阴影区域进行识别。该文提出一种阴影区域与目标区域图像联合的稀疏表示模型。通过使用12范数最小化方法求解该模型得到联合的稀疏表示,然后根据联合重构误差最小准则进行SAR图像目标识别。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,通过联合稀疏表示模型可以有效地将目标区域与阴影区域信息进行融合,相对于采用单独区域图像的稀疏表示识别方法性能更好。  相似文献   

7.
陈婕  潘洁  杨小英  陈海媚  廖志平 《电讯技术》2021,61(12):1547-1553
针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标识别问题,提出了一种联合多视角的方法。基于图像相关准则对多视角SAR图像进行聚类分析,获得若干视角集。分别对每个多视角子集采用多重集典型相关(Multiset Canonical Correlations Analysis,MCCA)进行特征融合,获得特征矢量。采用联合稀疏表示对各个视角集的特征矢量进行表征分类,获得决策结果。在样本丰富的MSTAR数据集上开展实验与分析,结果表明,所提方法对10类目标样本在标准操作条件、噪声干扰以及遮挡情形下均可以取得优势性能,验证了其有效性。  相似文献   

8.
基于图像稀疏表示的红外小目标检测算法   总被引:8,自引:2,他引:8       下载免费PDF全文
基于超完备字典的图像稀疏表示是一种新的图像表示理论,利用超完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示.针对红外小目标检测问题,提出了一种基于图像稀疏表示的检测方法,该方法采用二维高斯模型生成样本图像,继而构造超完备目标字典,然后依次提取测试图像的图像子块并计算其在超完备字典中的表示系数,背...  相似文献   

9.
廖辉传  赵海霞 《红外与激光工程》2022,51(8):20210725-1-20210725-6
提出基于分类器决策融合的红外图像目标识别问题。采用稀疏表示分类(Sparse representation-based classification,SRC)和卷积神经网络(Convolutional neural network,CNN)作为基础分类器。对于测试样本,首先基于SRC进行分类,并根据输出的决策变量判断决策可靠性。当判定识别结果可靠时,则识别过程结束,输出目标类别。反之,根据SRC的结果遴选部分置信度较高的候选类别,并在下一阶段针对这一步类别采用CNN进行确认分类。此外,将CNN的输出结果与SRC进行线性加权融合处理,根据融合结果做出最后的目标类别决策。提出方法通过综合SRC和CNN两者分类器的优点,综合提升红外目标识别性能。同时,这种层次化的决策融合方式避免了对所有样本的两次分类过程,整体上能够保证识别算法的效率。实验采用五类日常生活中常见的车辆目标红外图像进行,分别设置了原始样本条件、噪声样本条件以及遮挡样本条件。通过与部分现有方法进行对比,结果反映了提出方法的有效性和可靠性。  相似文献   

10.
远距红外图像中桥梁目标识别方法研究   总被引:11,自引:2,他引:9  
左震  张天序  汪国有 《电子学报》1998,26(11):6-9,24
本文针对远距红外图像中桥梁目标的各种特性,提出了一种基于知识的桥梁目标识别方法,完成了远距成像中弱目标的检测,提出了桥梁目标识别的快速算法,在实验中取得了很好的识别效果。  相似文献   

11.
针对人脸识别算法对光照变化敏感的问题,提出一种基于光照鲁棒稀疏表示的人脸识别方法。该方法对图像作小波变换,得到光照归一化图像,通过对光照归一化后人脸图像作稀疏变换,稀疏表示分类得出测试识别结果。本文方法在Yale B人脸库上仿真实验,识别率较高,对光照、表情、遮挡具有一定的鲁棒性。  相似文献   

12.
Human actions can be considered as a sequence of body poses over time, usually represented by coordinates corresponding to human skeleton models. Recently, a variety of low-cost devices have been released, able to produce markerless real time pose estimation. Nevertheless, limitations of the incorporated RGB-D sensors can produce inaccuracies, necessitating the utilization of alternative representation and classification schemes in order to boost performance. In this context, we propose a method for action recognition where skeletal data are initially processed in order to obtain robust and invariant pose representations and then vectors of dissimilarities to a set of prototype actions are computed. The task of recognition is performed in the dissimilarity space using sparse representation. A new publicly available dataset is introduced in this paper, created for evaluation purposes. The proposed method was also evaluated on other public datasets, and the results are compared to those of similar methods.  相似文献   

13.
针对加速度传感器的手势采集方式提出一种基于自学习稀疏表示的动态手势识别方法。该方法将分类识别问题转化为求解待识别样本对于训练样本的稀疏表示问题,直接对原始加速度信号进行操作,省去了特征提取过程,可方便地添加新的手势类别和删除已有的手势类别;利用面向类别的字典学习,来寻求一个较小的并经过优化的超完备字典来计算待识别样本的稀疏表示,从而大大缩减算法的计算复杂度,满足实时性要求。在包含18种手势的3 000多个样本的公开数据集上进行测试,实验结果验证了该方法的有效性。  相似文献   

14.
在获取到的人脸图像不完备以及人脸图像在有遮挡、光照、表情的变化或受到噪声污染时,识别率就会变得十分低,针对这一问题,本文提出了一种基于HOG低秩恢复与协同表征的人脸识别算法HLRR_CRC.首先采用低秩恢复算法得到训练样本和测试样本的干净人脸图像,然后对测试样本中干净的人脸图像和训练样本中干净的人脸图像分别进行HOG特征提取,得到HOG特征向量,以此特征向量为基础,得到测试样本特征矢量的协同表示,最后,通过规则化残差进行分类.在ORL、Extended Yale B和AR数据库上进行测试,实验结果表明,本文算法对光照、噪声较鲁棒,相比于当前的人脸识别算法,本文算法在恶劣光照和噪声下的识别率平均提高29.6%.  相似文献   

15.
为了克服核稀疏表示分类(KSRC)算法无法获取数据的局部性信息从而导致获取的稀疏表示系数判别性受到限制的不足,提出一种局部敏感的KSRC(LS-KSRC)算法用于人脸识别。通过在核特征空间中同时集成稀疏性和数据局部性信息,从而获取具有良好判别性的用于分类的稀疏表示系数。在标准的ORL人脸数据库和Extended Yale B人脸数据库的试验结果表明,本文方法的分类性能优于传统的(KSRC)算法、稀疏表示分类(SRC)算法、局部线性约束编码(LLC)、支持向量机(SVM)、最近邻法(NN)以及最近邻子空间法(NS),用于人脸识别能够取得优越的分类性能。  相似文献   

16.
牛敏 《光电子.激光》2021,32(2):130-139
随着智能制造系统应用的不断广泛,工业机器人 的需求急剧增加,现有的机器人零 部件产线无法智能判断零件是否合格,导致机器人零部件的测试工序繁杂、合格率不高。针 对上述问题,该文提出一种基于融合特征的机器人手腕小齿识别方法,可以有效识别判断机 器人手腕小齿的轮廓和纹理合格与否。该方法先对机器人手腕小齿进行Zernike矩特征和HOG 特征提取,将高维特征降维后,再通过BP神经网络分类器对目标融合特征进行训练识别。实 验结果表明:基于融合特征的机器人手腕小齿识别特性优于传统单一特征,有更好的识别效 果和鲁棒性。  相似文献   

17.
由于人脸图像数据的维数都较高,将稀疏表示分类用于人脸识别时计算量很大,为了提高人脸识别系统的效率,提出了一种融合半监督降维和稀疏表示的人脸识别方法。首先利用半监督降维算法对图像进行降维处理,在较低的维数空间快速取得较高的识别率,然后利用稀疏表示分类进行人脸识别,取得比传统的最近邻分类器更高的识别率,最后在ORL人脸库上进行实验验证。结果表明,利用该融合算法可快速有效地提高人脸图像的识别效果。  相似文献   

18.
唐意东  黄树彩  薛爱军 《电子学报》2017,45(10):2368-2374
随着高光谱成像技术的发展,日益提高的光谱分辨率在提高目标检测和识别能力的同时,其较高的数据维度和较大的数据量也为数据分析和处理带来了很大的挑战.波段选择作为一种有效提高处理效率的技术受到广泛关注,但却鲜有专门针对目标检测设计的方法.针对上述问题,本文在分析约束能量最小化(CEM)检测算法特点的基础上,提出了一种面向目标检测,基于稀疏表示的波段选择方法.该方法首先基于数据的对称KL散度分布情况,将原始高光谱数据划分为若干波段子空间.然后在各子空间内稀疏重构检测结果,利用选择波段与稀疏向量非零项的一一对应关系,通过求解最优化问题实现波段选择.实验结果验证了该方法的有效性.  相似文献   

19.
针对人脸识别问题,提出采用深度特征筛选及融合的方法.采用卷积神经网络(CNN)学习人脸图像的多层次深度特征.对于所有的深度特征矢量,使用斯皮尔曼等级相关系数筛选其中有效部分.基于支持向量机(SVM)对筛选得到的任一深度特征矢量进行分类决策,并基于线性加权融合对它们的结果进行融合,最终确定待识别样本的人脸类别.基于ORL...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号