首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present paper illustrates the results of an experimental program on Reinforced Concrete (RC) beams externally strengthened with carbon Fibre Reinforced Plastic (FRP) laminates and Near Surface Mounted (NSM) bars under monotonic and cyclic loads, the latter ones characterized by a low number of cycles in the elastic and post-elastic range. Comparisons between experimental and theoretical failure loads are discussed in detail.  相似文献   

2.
碳纤维片材加固混凝土梁中粘结界面应力的有限元分析   总被引:6,自引:1,他引:5  
为摸清碳纤维片材加固混凝土梁中粘接界面上的应力分布,本文利用ANSYS商业软件进行了有限元分析。重点研究了有限元计算模型、碳纤维片材层数以及U形箍对粘接界面应力的影响。研究结果表明,有限元计算模型、碳纤维片材层数对粘接界面端部的应力峰值有影响,U形箍会改变粘接界面上的应力分布。  相似文献   

3.
80年代以来,FRP(纤维增强复合材料)作为一种高性能的新型混凝土结构加固补强材料受到科研院所和工程界的广泛关注[1]。迄今为止,国内外关于FRP片材加固钢筋混凝土结构研究的试验和理论研究已相当丰富,并在工程界得到大量实践应用。本文着重介绍了FRP片材加固钢筋混凝土梁的抗弯性能、抗剪性能、以及裂缝、刚度研究,以期为FRP片材的进一步研究和应用提供参考。  相似文献   

4.
This paper presents some experimental results about cracking phenomena of reinforced concrete beams externally strengthened with bonded composite materials. Carbon Fibre Reinforced Polymers (CFRP) laminates or steel (SRP) tapes have been used. Comparisons with analytical results in terms of cracks width and crack spacing are reported using an analytical model developed by the authors, taking into account the non-linear behaviour of materials and bond laws. Comparisons at service condition with code formulas are also reported.  相似文献   

5.
This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.  相似文献   

6.
栗青  刘军  黄宝宗 《建筑节能》2006,34(3):25-27
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果;将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

7.
栗青  刘军  黄宝宗  金生吉 《混凝土》2006,127(8):12-14
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于失效,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果;将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

8.
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。FRP加固修补的缺陷在于,失效主要是混凝土的破坏和胶层的失效,纤维布的性能并没有得到充分的发挥,采用将纤维布进行初始拉伸后贴于梁的下表面的方法对梁进行修补,可以改善加固修补效果:将纤维布预先进行3mm和5mm的拉伸并对加固过程进行了非线性有限元分析模拟,并与试验结果进行了对比,证明了此方法加固的有效性。  相似文献   

9.
FRP由于其高强度、轻质量及防腐等特性,在结构加固改造中的应用越来越广泛。根据文献中的FRP加固钢筋混凝土梁的荷载—变形模型,通过计算梁在开裂、钢筋屈服及极限情况3个阶段的弯矩和变形,建立了基于Rasheed模型的三折线简化分析模型,从而使荷载—变形关系计算更加简便。对该模型的数值试验模拟算例分析结果表明,该模型与实际的荷载变形曲线能较好地吻合,为FRP的应用研究提供参考。  相似文献   

10.
利用大型通用有限元软件ANSYS10.0,对碳纤维片材(CFRP)加固钢筋混凝土梁的挠度进行了非线性有限元分析.研究了各种加固方案的挠度随荷载变化的情况,并与实测值进行了对比,计算表明,数值模拟的结果与实测值能较好地吻合,且粘贴碳纤维布后可使挠度明显减少.  相似文献   

11.
文中进行7根复材(FRP)网格增强超高韧性纤维水泥基(UHTCC)复合加固钢筋混凝土梁的抗弯性能试验,将FRP网格类型、FRP网格增强率、FRP-UHTCC复合层黏结长度作为试验变量,分析各变量对FRP-UHTCC复合增强混凝土梁弯曲性能的影响。在试验研究的基础上,给出FRP-UHTCC复合增强混凝土梁的抗弯承载力计算方法。试验结果表明,FRP-UHTCC复合层与混凝土间没有发生相对滑移现象,可以有效抑制加固层端部剥离破坏,加固梁的破坏模式为FRP网格中纵向纤维筋被拉断破坏。BFRP格栅与UHTCC黏结基体没有发生脱黏现象,优于BFRP编织网与UHTCC的黏结效果。随着FRP网格增强率的增大,加固梁的抗弯承载力得到显著提高。与未加固的普通混凝土梁相比,加固梁的开裂、屈服和极限荷载最大提高幅度分别为97%、35%和33%。计算结果表明,预测值与试验值吻合较好,可以有效地预测FRP-UHTCC复合增强混凝土梁的抗弯承载力。  相似文献   

12.
The application of externally bonding FRP sheets to concrete structures has become a popular strengthening procedure. However, such FRP strengthening effect sometimes could not be well achieved due to the premature interfacial debonding along FRP–concrete bond interface. In FRP-reinforced plain concrete members, the rapid propagation of localized flexural cracks in concrete is one of the primary reasons that cause the concentration of interfacial shear stress around where concrete crack happens, thus resulting in the debonding initiation. Therefore, an effective control of crack localization and propagation in concrete might be a solution to avoid or delay the debonding. This article presents an approach to improve the FRP strengthening performance to concrete beams by mixing short steel-fibers into the concrete matrix. To investigate the enhancement of FRP strengthening effect, a series of experiments are carried out, which include a standard JIS test of short four-point bending beams without FRP strengthening and a test of three-point bending FRP-strengthened concrete beams with different volume fractions of mixed short steel-fibers. The control of crack propagation and the increase of concrete toughness through mixing short steel-fibers are achieved. In the experiment of three-point bending, FRP-strengthened concrete beams increasing steel-fiber volume fraction, leads to a smeared crack distribution in the concrete. The ultimate failure mode also changes from peeling-induced debonding to FRP rupture so that the FRP sheet can exert its strengthening effect sufficiently. In addition, a finite element analysis is performed to compare the experimental results, in which the increase of concrete toughness is described by fracture energy. The simulation basically reproduces the experiments. The validity of the proposed approach is demonstrated.  相似文献   

13.
预应力碳纤维板加固钢筋混凝土梁预应力损失试验研究   总被引:2,自引:0,他引:2  
通过25根预应力碳纤维板加固钢筋混凝土梁试验研究,分析了预应力加固梁制作各工序的预应力损失。试验结果表明:当预应力水平分别为20%和30%时,预应力碳纤维板加固梁的平均预应力损失(相对于初始预应力)分别为14.38%和15.36%。对碳纤维板采取超张拉和二次超张拉技术,可以有效减小预应力损失。基于国内外混凝土结构设计规范的预应力损失计算方法,将预应力损失分为三部分:碳纤维板和锚具间的滑移引起的预应力损失、混凝土弹性压缩变形引起的预应力损失和碳纤维板应力松弛造成的预应力损失。在试验基础上,提出了三部分预应力损失的计算表达式,为预应力碳纤维板的加固设计提供参考。  相似文献   

14.
利用ANSYS对碳纤维布加固RC梁的非线性有限元分析   总被引:8,自引:3,他引:5  
通过利用大型通用有限元软件ANSYS,对钢筋混凝土(RC)试件梁的5种碳纤维布粘贴方案的抗弯性能,进行了非线性有限元分析。结果发现,屈服荷载和极限荷载的计算值与实测值吻合得很好。这说明通过选用适当的ANSYS单元类型和设置合理的参数,完全可以实现对粘贴碳纤维布加固钢筋混凝土结构的“虚拟试验”。本文目的是确定一些具有共性的参数,以便于其它情况的分析。  相似文献   

15.
Three-point bending tests were carried out on nineteen Reinforced Concrete (RC) beams strengthened with FRP in the form of completely wrapping. The strip width to spacing ratios, FRP type, shear span to effective depth ratios, the number of FRP layers in shear, and the effect of stirrups spacing were the parameters investigated in the experimental study. The FRP contribution to strength on beams having the same strip width to spacing ratios could be affected by the shear span to effective depth ratios and stirrups spacing. The FRP contributions to strength were less on beams with stirrups in comparison to the tested beams without stirrups. Strengthening RC beams using FRP could change the failure modes of the beams compared to the reference beam. In addition to the experimental study, a number of equations used to predict the FRP contribution to the shear strength of the strengthened RC beams were assessed by using a limited number of beams available in the literature. The effective FRP strain is predicted by using test results, and this prediction is used to calculate the FRP contribution to shear strength in ACI 440.2R (2017) equation. Based on the statistical values of the data, the proposed equation has the lowest coefficient of variation (COV) value than the other equations.  相似文献   

16.
栗青  刘军  黄宝宗 《混凝土》2006,(2):16-18
基于连续损伤理论,考虑胶层的剪切效应,建立了FRP加固修补混凝土结构的高阶剪切弯曲与面内变形耦合的非线性有限元分析模型。利用自编的有限元分析软件对GFRP加固混凝土梁进行了有限元分析。证明了该模型的有效性。利用此分析方法对未加固、初始加固及出现宏观裂纹后进行加固的混凝土渠进行分析对比,从而为实际工程的应用提供了理论依据。  相似文献   

17.
A recent and promising method for shear strengthening of reinforced concrete (RC) members is the use of near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. Only a few studies have been conducted to date on the use of NSM FRP reinforcement for shear strengthening of RC beams. These studies identified some critical failure modes related to debonding between the NSM reinforcement and the concrete substrate. However, more tests need to be conducted to identify all possible failure modes of strengthened beams. Moreover, virtually no test results are available on the behavior of shear-strengthened beams containing steel shear reinforcement, and on the effect of variables such as the type of epoxy used as groove filler. This paper illustrates a research program on shear strengthening of RC beams with NSM reinforcement, aimed at gaining more test results to fill the gaps in knowledge mentioned above. A number of beams were tested to analyze the influence on the structural behavior and failure mode of selected test parameters, i.e. type of NSM reinforcement (round bars and strips), spacing and inclination of the NSM reinforcement, and mechanical properties of the groove-filling epoxy. One beam strengthened in shear with externally bonded FRP laminates was also tested for comparison purposes. All beams had a limited amount of internal steel shear reinforcement to simulate a real strengthening situation. Test results are presented and discussed in the paper.  相似文献   

18.
This paper presents a rational model to predict the ultimate load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). The model is based on the truss analogy and the theory of plasticity and is opportunely refined in order to incorporate some critical aspects, such as variable angle crack, non-uniform FRP stress distribution over the shear crack, shear span/depth ratio. It is a general and unified model that allows consideration of all the main possible failure mechanisms of strengthened RC beams, related to flexural-shear interaction, shear web-crushing and pure flexural mechanisms. The model is validated against a large number of beam tests reported in the literature, involving a wide range of geometrical and mechanical characteristics. The numerical investigation shows a very satisfactory correlation between predicted and experimental data.  相似文献   

19.
利用大型通用有限元软件ANSYS10.0,对碳纤维片材(CFRP)加固钢筋混凝土梁的平面假设进行了非线性有限元分析。分析包括了各级荷载下纯弯曲梁段和非纯弯曲梁段横截面上的水平位移,其结果表明,平面假设在所有情况下均有效。  相似文献   

20.
The shear capacity of reinforced concrete members can be successfully increased using near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement. Tests conducted thus far have shown that failure is often controlled by diagonal tension associated to debonding between the NSM reinforcement and the concrete substrate. In absence of steel stirrups and/or when the spacing of the NSM reinforcement is large, debonding involves separately each of the bars crossed by the critical shear crack. In order for shear strengthening of beams with NSM reinforcement to be safely designed, an analytical model able to encompass the failure mode mentioned above must be developed. This paper presents two possible approaches, a simplified and a more sophisticated one, to predict the FRP contribution to the shear capacity. In the first approach, suitable for immediate design use, an ideally plastic bond–slip behavior of the NSM reinforcement is assumed, which implies a complete redistribution of the bond stresses along the reinforcement at ultimate. The second approach, implemented numerically, accounts for detailed bond–slip modeling of the NSM reinforcement, considering different types of local bond–slip laws calibrated during previous experimental investigations. It also takes advantage of an approach developed by previous researchers to evaluate the interaction between the contributions of steel stirrups and FRP reinforcement to the shear capacity. The paper illustrates the two models and compares their predictions, with the ultimate goal to evaluate whether the first simple model can be used expecting the same safety in predictions of the second model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号