首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research is to obtain a low density self-levelling cement mortar containing grounded slate from quarrying waste that could be used as a substrate levelling layer for flooring purposes. An experimental research was carried out on the design and development of a self-levelling cement mortar substituting up to 75% of the cement by grounded slate from quarrying wastes. In a first stage, the formation of stable reactive binding products of slate–cement pastes was confirmed, using Vicat needle test and Scanning Electron Microscopy and Energy Dispersive Spectroscopy analysis (SEM/EDAX). In addition, mortar mixtures with different amounts of grounded slate have been studied. Fresh state consistency, shrinkage measurements in wet and dry conditions and physical and mechanical properties in the hardened state of these mortars have been assessed. Finally, mortar shrinkage was controlled according to the selected application, including admixtures and glass fibers in the mortar composition, to achieve the flowability and strength required, without segregation.Grounded slate acts as binder, jointly with the cement, confirming that the inclusion of the slate wastes implies a waste valorisation and not a waste disposal. The use of admixtures and short fibers allows to develop a self-levelling mortar.  相似文献   

2.
研究了不同聚羧酸减水剂与自制无碱液体速凝剂复合后对水泥浆体凝结时间与早期强度的影响。结果表明:当无碱速凝剂掺量为水泥质量的6%时,复合推荐掺量的不同类型减水剂会显著延缓水泥净浆的凝结时间;当速凝剂掺量提高至7%时,凝结时间会缩短-延长。掺入市售聚羧酸减水剂的水泥净浆在静置30、60 min后再加入速凝剂,与同掺减水剂和速凝剂的水泥净浆相比,凝结时间延缓明显;但采用复合了保坍组分的自制聚羧酸减水剂再加入速凝剂,对水泥浆体的凝结时间影响不大。添加自制聚羧酸减水剂还会对掺无碱速凝剂水泥砂浆的1 d强度有一定的提高。  相似文献   

3.
Despite the large variations in the behaviors of water-reducing admixtures upon changes in their structures, most previous reports on the cement-admixture compatibility did not provide sufficient information on the structure of the admixture. Hence, the evaluation and generalization of the reports on the cement-admixture compatibility are challenging. In this study, three different polycarboxylate-ether-based water-reducing admixtures with the same free nonionic content, anionic/nonionic molar ratio, and main chain length and different side chain lengths were produced. The compatibility of these admixtures with a CEM I 42.5R-type cement was investigated. In addition, an analysis of variance was performed on the experiment results to evaluate the contributions of the admixture type, admixture/cement ratio, and elapsing time to the Marsh funnel flow time, mini-slump, slump flow, and compressive strength. The water-reducing admixtures having long or short side chains reduced the initial flow characteristics of the cementitious systems. However, the admixture having the shortest side chain was better with regard to flow retention. The side chain length of the admixture did not have significant effects on the compressive strength and water absorption capacity of the mortar mixtures and mini-slump performances of the cement paste mixtures. Regarding the behaviors of the admixtures in the cementitious systems, an optimal admixture side chain molecular weight is proposed.  相似文献   

4.
为解决蒸压加气混凝土砌块墙体易开裂空鼓问题,试验研究了水泥砂浆、掺加砂浆王的砂浆和添加复合外加剂的专用砂浆,并就三种砂浆的泌水性、稠度、抗压强度和收缩值等性能进行了对比,对比结果表明:水泥砂浆的抗压强度最高,且泌水较严重,收缩值最大;掺加砂浆王的砂浆的抗压强度比水泥砂浆略有减小,但相对蒸压加气混凝土砌块仍较大,泌水性较...  相似文献   

5.
This paper presents a study of the properties and behavior of cement mortar with clinoptilolite which is one of the most common zeolite minerals found in nature. Six mortar mixtures were prepared by replacing the Portland cement with 0%, 5%, 10%, 15%, 20% and 30% clinoptilolite by weight. Test results showed that water demand, soundness and setting times of the cement pastes increased with the increase of clinoptilolite content. Compressive and flexural strength of the mortars containing clinoptilolite were higher than the control mixture. Dry unit weight of the mortars with clinoptilolite was lower than the control mortar. Clinoptilolite replacement decreased water absorption and porosity of the mortars. The control mortar showed less durability to carbonation compared to the mortars made with clinoptilolite at the end of carbonation tests. Freeze–thaw resistance of the mortars containing 5% clinoptilolite was higher than control mortar. The effect of clinoptilolite incorporation on high-temperature resistance seemed to be dependent on amount of clinoptilolite, temperature level, and the cooling method.  相似文献   

6.
掺高效减水剂水泥砂浆的早期开裂研究   总被引:9,自引:0,他引:9  
采用多通道椭圆环收缩开裂试验、自由收缩试验和强度试验综合评价了萘系(UNF)、聚羧酸类(PC)高效减水剂对水泥砂浆体积稳定性及早期开裂的影响.结果表明,高效减水剂的掺入延长了水泥砂浆的初始开裂时间,从而降低了水泥砂浆的开裂敏感性.高效减水剂降低水泥砂浆开裂敏感性的效果为:聚羧酸类〉高浓型萘系〉普通型萘系.掺高效减水弃1均增大了水泥砂浆的自由收缩值,且水泥砂浆自由收缩值随着高效减水剂掺量的增加而增大.高效减水剂控制水泥砂浆体积稳定性的效果为:聚羧酸类〉普通型萘系〉高浓型萘系.聚羧酸类高效减水剂的掺入减小了水泥砂浆的最大裂纹宽度,而萘系高效减水剂的掺入则加快了水泥砂浆最大裂纹宽度的发展速度.在干燥养护条件下,掺聚羧酸类高效减水剂比掺萘系高效减水剂更能有效地提高水泥砂浆28d的强度.  相似文献   

7.
The development of new binders, as an alternative to traditional cement, by the alkaline activation of industrial by-products (i.e. ground granulated slag and fly ash) is an ongoing research topic in the scientific community [Puertas F, Amat T, Jimenez AF, Vazquez T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem Concr Res 2003;33(12): 2031–6]. The aim of this study was to investigate the feasibility of using and alkaline activated ground Turkish slag to produce a mortar without Portland cement (PC).Following the characterization of the slag, mortar specimens made with alkali-activated slag were prepared. Three different activators were used: liquid sodium silicate (LSS), sodium hydroxide (SH) and sodium carbonate (SC) at different sodium concentrations. Compressive and flexural tensile strength of alkali-activated slag mortar was measured at 7-days, 28-days and 3-months. Drying shrinkage of the mortar was measured up to 6-months. Setting times of the alkali-activated slag paste and PC paste were also measured.Setting times of LSS and SH activated slag pastes were found to be much slower than the setting time of PC paste. However, slag paste activated with SC showed similar setting properties to PC paste.LSS, SH and SC activated slag mortar developed 81, 29, and 36 MPa maximum compressive strengths, and 6.8, 3.8, and 5.3 MPa maximum flexural tensile strengths at 28-days. PC mortar developed 33 MPa compressive strength and 5.2 MPa flexural tensile strength. LSS and SH activated slag mortars were found to be more brittle than SC activated slag and PC mortars.Slag mortar made with LSS had a high drying shrinkage, up to six times that of PC mortar. Similarly, slag mortar made with SH had a shrinkage up to three times that of PC mortar. However, SC activated slag mortar had a lower or comparable shrinkage to PC mortar. Therefore, the use of SC as an activator for slag mortar is recommended, since it results in adequate strength, similar setting times to PC mortar and comparable or lower shrinkage.  相似文献   

8.
In this study, the effects of three types of plasticizing chemical admixtures (modified lignosulfonate, sulfonated naphthalene formaldehyde and polycarboxylate based) on deleterious expansion due to alkali–silica reaction (ASR) have been investigated. Two different types of cements with low (0.53 Na2O eq.) and high (0.98 Na2O eq.) alkali contents, a non-reactive crushed limestone as fine aggregate and a reactive river sand were used within the scope of the experimental program. ASR tests were conducted according to accelerated mortar bar method (ASTM C 1260). Additionally the flow value, dry unit weight, capillary water absorption and compressive strength tests were performed. Test results indicated that mortars prepared with inert fine aggregate caused no significant expansion, regardless of cement type, admixture type and dosage. However, for mixes containing reactive sand, admixtures increased or decreased the expansion values (compared to plain mortars) depending on the alkali content of cement used. The magnitude of change of expansion also depended on the type and amount of admixture incorporation which have a dominant effect on stability and compactability of mortars. The high-alkali cement usually revealed the ASR expansion augmentation behaviour of admixtures. In contrast, low alkali cement decreased the expansion values compared to the control specimens.  相似文献   

9.
高碱度水泥基材料早期开裂敏感性研究   总被引:4,自引:0,他引:4  
选用粉煤灰、减缩剂和减水剂,采用五路裂缝测定仪和非接触式电阻率测定仪,分别测试了相同水灰比、不同碱类型的水泥砂浆在干燥条件下约束收缩开裂的初始时间与水泥浆体早期水化24h内的电阻率变化,并测定了水泥砂浆在干燥环境下的抗压、抗折强度.结果表明:碱度增加会加速水泥的早期水化硬化以及微结构的形成与发展;Na^ 提高水泥砂浆早期强度、增加约束收缩开裂敏感性的作用要比K^ 的明显,尤其在低水灰比、掺减水剂时其影响更为明显;粉煤灰和减缩荆可延缓水泥(尤其是高碱度的水泥基材料)的早期水化硬化,降低水泥砂浆强度的发展,推迟初始开裂时间.  相似文献   

10.
The aim of the present research work was the evaluation of six commercial grinding additives, which were used for the production of Portland cement (ground in a ball mill at a laboratory stage). For this purpose, a reference sample was also produced without using any admixture. The characterization of the grinding aids (GA) was carried out by Fourier transform infra-red spectroscopy (FT-IR) and gas chromatography/mass spectrometry (GC/MS). All the cement mixtures were tested for initial and final setting times, consistency of standard paste, flow of normal mortar and compressive strengths after 2, 7 and 28 days. In all cases the addition of grinding aids resulted in improvement of the specific surface and grindability index, a fact that was attributed to the additive ability not only to reduce resistance to comminution, but also to prevent agglomeration and powder coatings of ball and mill. The mortars made with cements ground with the addition of commercial additives, which contained triisopropanolamine (TIPA), exhibited higher strength at any age and higher setting times. On the other hand, the presence of triethanolamine (TEA) on the commercial grinding additives did not affect the mechanical properties of the produced cements but slightly decreased their setting times.  相似文献   

11.
将快硬硫铝酸盐水泥(R·SAC)掺加到普通硅酸盐水泥(P·O)中得到混合水泥,以改善P·O 3D打印材料凝结时间长、早期强度低的缺点,系统研究了R·SAC掺量对其凝结时间、力学性能、流动性和堆积性的影响.结果 表明:当R·SAC掺量为14%~20%时,促凝效果明显,有效降低了混合水泥净浆、砂浆的凝结时间,混合水泥净浆的初凝时间可以控制在40~70 min,满足3D打印的要求;掺加R·SAC可以提高材料的流动性,当R·SAC掺量为20%时,混合水泥砂浆的流动度比P·O砂浆提高了11 mm,稠度提高了15 mm;当混合水泥砂浆的流动度在160~175 mm时,可以满足3D打印材料的堆积性要求;掺加少量R·SAC对混合水泥砂浆的早期强度有一定的提升,但是其后期强度有所降低.  相似文献   

12.
This paper presents the feasibility of incorporating ultra-fine particles collected in the separator bag filter during the process of manufacturing cement (SBFC) as an substitution material for cement. Approximately 2.5% of SBFC is produced during OPC manufacturing process. Also, the average size of SBFC particles is about 5 μm, the average size of OPC particles is about 14 μm. This method does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. In order to investigate the characteristic properties of this cement mixture, cement blends have been produced by using different amounts of SBFC. While the blaine value of 100% SBFC was significantly higher (6953 cm2/g) than that of Ordinary Portland Cement (OPC), its chemical composition showed no significant difference. Cement paste, mortar mixtures have been prepared by using cement blends incorporating 0, 50 and 100% SBFC by weight. Flowability, setting time and compressive strength tests has been performed. Test results showed that substitution of SBFC negatively affect the flowability of cement paste and mortar mixtures. Moreover, setting times shortened, compressive and flexural strength values increased by the substitution of SBFC. Finally, microstructure analysis of cement paste samples showed that incorporation of SBFC reduced the internal porosity by 9% as determined by the proposed method. The internal porosity of paste was measured by mercury intrusion porosimetry (MIP). The compressive strength and bending strength of mortar were higher in the order of 100, 50 and 0% SBFC mixed.  相似文献   

13.
磷酸镁水泥基材料复合减水剂的应用研究   总被引:1,自引:0,他引:1  
在研究适用于普通硅酸盐水泥的减水剂对磷酸镁水泥(MPC)基材料流动性影响的基础上,根据MPC基材料的水化特点,采用复合方法配制减水剂,研究了复合减水剂对MPC基材料流动性、凝结时间、强度、水化产物及结构的影响.结果表明,适合于普通硅酸盐水泥的减水剂,对MPC砂浆流动性没有明显改善作用;复合减水剂对MPC基材料流动性及强度均有明显改善作用,而且还能提高MPC水化产物生成量和水化产物密实度.  相似文献   

14.
研究了矿粉、硅灰和粉煤灰3种矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系的标准稠度用水量、凝结时间、水化放热、胶砂抗折及抗压强度、砂浆干缩率、抗硫酸盐侵蚀性能和水化产物的影响。结果表明:随矿物掺合料掺量的增加,复合体系的标准稠度用水量增大,凝结时间延长;掺加矿物掺合料后水化放热峰出现时间延后,总水化放热量减少,其中掺加矿粉和硅灰的试件初期水化速率减慢程度较掺加粉煤灰试件更明显;3种矿物掺合料对复合体系强度的影响差别较大,掺加3%硅灰的试件3 d抗压强度增长较快;硅灰的掺加会使砂浆干缩率增大,矿粉、粉煤灰的掺加可以减小砂浆试件的干缩;矿物掺合料的掺加会提高胶砂试件抗硫酸盐侵蚀性能,掺粉煤灰的试件抗硫酸盐侵蚀性能最好。  相似文献   

15.
高吸水树脂改性建筑砂浆和易性和粘结性能的研究   总被引:2,自引:0,他引:2  
张宇  叶华  赵建青 《化学建材》2004,20(5):53-56,59
采用溶液聚合法合成了三种高吸水树脂,对蒸馏水的吸收能力是SAP1>SAP3>SAP2,对生理盐水和水泥浆析出液中的吸收能力都是SAP2>SAP3>SAP1。将三种高吸水树脂分别加入到水泥砂浆和水泥石灰混合砂浆两类建筑砂浆中,砂浆的稠度减小,SAP2的影响程度最大;高吸水树脂的加入有效地减小了砂浆的分层度,在水泥砂浆中掺加0.10%的三种高吸水树脂,砂浆分层度分别减少60%、40%、53%;在砂浆中掺加少量的高吸水树脂可以提高其粘结强度,增强效果SAP1>SAP3>SAP2,当掺量较大时,随着掺量增多粘结强度迅速减小。  相似文献   

16.
李建杰 《山东建材》2007,28(4):21-25
研究了掺铝酸钙膨胀剂水泥的力学性能,并使用XRD、SEM等分析方法研究了其水化过程。得出了掺铝酸钙膨胀荆水泥的限制膨胀率及强度发展规律,并对水化产物的结构和形貌进行了描述。  相似文献   

17.
选用m(铝酸盐水泥)∶m(普通硅酸盐水泥)∶m(水石膏)=85%∶4%∶11%的三元胶凝体系,通过控制凝结时间制备出了自流平水下抗分散铝酸盐水泥基砂浆。通过测试其水陆强度、pH值、浊度并结合SEM微观分析,探究了铝酸盐水泥基砂浆抗分散性。结果表明,通过酒石酸和葡萄糖酸钠双掺解决了铝酸盐水泥基砂浆流动度损失大的问题。再生乳胶掺量增加优化了砂浆的抗分散能力。通过模拟水下现场浇筑,发现水下成型的铝酸盐水泥基砂浆试件的28 d抗压强度均在70 MPa以上,形成了控制凝结时间的水下成型制备技术。SEM揭示控制凝结时间的浇筑技术,水下成型的铝酸盐水泥砂浆试件内部密实、孔隙率低。  相似文献   

18.
In this study, the effects of Portland composite and composite cement on the properties of cement paste, durability of mortar and permeability of concrete were investigated. The results were compared with reference mixture of cement paste, mortar and concrete made with Portland cement. The ratio of water to cementitious materials (W/Cm) in cement paste, mortar and concrete mixtures were determined in a way that all the similar mixtures had the same workability. Flexural tensile and compressive strength of mortar samples containing Portland Composite and Composite cement were determined at various ages. In cement paste samples, the shortest and longest setting time was obtained in samples made with Portland and composite cement, respectively. Also, maximum amount of volume expansion was found in the sample made with Portland composite cement. Mortar samples made with Portland composite and composite cement had lower strength values than the reference mortar mixture at early ages but at 28 days and later ages they had higher strength values than the reference mixture. In durability tests, there was no loss of weight and cracks in mortar mixture samples made with Portland composite and composite cement when they were held in microthiol, Na2SO4 and MgSO4 solutions. Also, no water leakage was observed through the concrete samples made with Portland composite and composite cement when they were held under five-bar pressurized water.  相似文献   

19.
严亮  于翔  杨久俊  赵顺波  杨中正 《混凝土》2012,(3):113-114,130
采用水溶性聚合物-聚丙烯酰胺对水泥浆体进行改性处理,对比分析了不同掺量的聚丙烯酰胺对新拌水泥浆体的凝结时间、标准稠度用水量、流动度的影响,以及对硬化水泥浆体力学性能的影响。研究结果表明:聚丙烯酰胺增加了水泥浆体标准稠度用水量,降低了水泥浆体的流动度,聚丙烯酰胺对水泥基复合材料的抗压强度无改善作用,但在其掺量为1%时,复合材料28 d的抗折强度提高了9.55%,而且随着其掺量的增加,复合材料的折压比呈增大趋势,其整体韧性得到改善。  相似文献   

20.
The low flexural strength and high brittleness of cementitious materials impair their service life in building structures. In this study, we developed a new polymer-modified mortar by in situ polymerization of acrylamide (AM) monomers during the cement setting, which enhanced the flexural and durable performances of mortars. The mechanical properties, micro-and-pore structures, hydrated products, interactions between cement hydrates and polyacrylamide (PAM), and durability-related properties of the mortars were investigated comprehensively. Mortars with 5% PAM exhibited the best performance in terms of flexural strength among all the mixtures. The mechanical strength of cement pastes modified by in situ polymerization of AM monomers was significantly superior to those modified by PAM. The chemical interactions between the polymer molecules and cement hydrates together with the formation of polymer films glued the cement hydrates and polymers and resulted in an interpenetrating network structure, which strengthened the flexural strength. Reductions in porosity and calcium hydroxide content and improvement in capillary water absorption were achieved with the addition of PAM. Finally, the chloride resistance was significantly enhanced with the incorporation of PAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号