首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
This paper addresses adaptive control of sandwich non-linear systems having an unknown sandwiched dead-zone between the linear dynamic blocks, as illustrated by a hydraulic valve system. An adaptive hybrid control scheme for control of such sandwiched dead-zone systems is developed. The proposed control scheme employs an inner-loop discrete-time feedback design and an outer-loop continuous-time feedback design, combined with an adaptive dead-zone inverse to cancel the dead-zone effect for improving output tracking. Stability and tracking performance of the closed-loop control system are analysed. Simulation results are used to illustrate the effectiveness of the proposed adaptive dead-zone inverse controller.  相似文献   

2.
电液比例位置同步液压系统受到元件安装精度、死区非线性以及系统参数摄动等因素的影响,导致两侧子系统性能不一致进而引起位置不同步.针对这一问题,提出由位置控制器、死区补偿器、同步控制器组成的复合控制方案.首先,建立电液比例位置控制系统数学模型,并分析系统内部参数摄动及比例阀死区特性对同步控制精度造成的影响.在此基础上,设计线性自抗扰同步控制器,实现对系统内外扰动的实时估计与主动补偿,同时为提高液压缸动态性能,减小稳态误差,设计了比例阀死区补偿器.仿真和实验结果表明,自抗扰控制器有效地抑制了内外扰动,提高了位置同步控制精度,而死区补偿器的引入改善了系统动态响应性能,降低了稳态位置同步误差.  相似文献   

3.
It is a challenging work to design high precision/high performance motion controller for permanent magnet synchronous motor (PMSM) due to some difficulties, such as varying operating conditions, parametric uncertainties and external disturbances. In order to improve tracking control performance of PMSM, this paper proposes an adaptive fuzzy robust control (AFRC) algorithm with smooth inverse based dead-zone compensation. Instead of nonsmooth dead-zone inverse which would cause the possible control signal chattering phenomenon, a new smooth dead-zone inverse is proposed for non-symmetric dead-zone compensation in PMSM system. AFRC controller is synthesized by combining backstepping technique and small gain theorem. Discontinuous projectionbased parameter adaptive law is used to estimate unknown system parameters. The Takagi-Sugeno fuzzy logic systems are employed to approximate the unstructured dynamics. Robust control law ensures the robustness of closed loop control system. The proposed AFRC algorithm with smooth inverse based dead-zone compensation is verified on a practical PMSM control system. The comparative experimental results indicate that the smooth inverse for non-symmetric dead-zone nonlinearity can effectively avoid the chattering phenomenon which would be caused by nonsmooth dead-zone inverse, and the proposed control strategy can improve the PMSM output tracking performance.  相似文献   

4.
针对具有执行器故障的四旋翼无人机,提出一种自适应预定性能控制方案.首先,基于内环姿态控制及外环位置控制的双闭环控制策略,将无人机系统解耦为位置子系统和姿态子系统;其次,设计自适应控制方案,对存在的执行器故障参数进行自适应估计,有效地解决了执行器故障下无人机稳定控制问题;然后,提出一种预定性能控制策略,保证系统的暂稳态性能满足预先给定的性能指标;最后,通过仿真实例验证所提出方法的有效性.  相似文献   

5.
针对连铸结晶器振动位移系统存在伺服电机驱动单元等执行器故障和负载转矩扰动问题, 本文提出一种基于嵌套自适应观测器的有限时间容错策略. 首先, 设计一种嵌套自适应观测器在线估计由执行器故障和负载转矩扰动构成的综合不确定项; 其次, 采用分层设计与终端滑模相结合的方法, 分别对位移子系统和电流环子系统设计全阶滑模控制器(FOSMC)和终端滑模控制器补偿综合不确定项, 并通过引入一阶低通滤波器来提高控制信号的连续性. 理论分析表明, 本文所提容错控制策略能够保证闭环系统所有状态有限时间稳定; 最后, 通过仿真对比研究验证了本文所提控制策略的有效性.  相似文献   

6.
ABSTRACT

This paper proposed a new adaptive integral sliding mode FTC scheme to deal with the actuator faults and failure. The scheme combines integral sliding mode control, control allocation scheme and adaptive strategy. The unknown actuator faults are handled by adaptive modulation gain of nonlinear ISMC law. To cope with complete failure, control allocation scheme is integrated with the baseline controller to provide tolerance. The proposed strategy relies on the estimate of actuator effectiveness. Therefore, an adaptive sliding mode observer based fault reconstruction scheme is proposed in this paper. The proposed scheme is implemented on dissimilar redundant actuation system driven by hydraulic and electro-hydraulic actuators. In nominal and faulty conditions, both actuators are contributing to achieving the desired control surface deflection. However, when the actuator failure occurs, the control signals are reallocated to the redundant actuator. The problem of dynamics mismatch is addressed using fractional order controller designed in an inner loop. The comparison with the existing literature is also conducted in the simulation to validate the dominant performance.  相似文献   

7.
This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone. By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input, the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness. Only one adaptive parameter is needed no matter how many unknown parameters there are. The system investigated is more general and there is no need to solve Linear matrix inequality (LMI). Moreover, with our method, some assumptions imposed on nonlinear terms and dead-zone input are relaxed. Finally, simulations illustrate the effectiveness of the proposed adaptive control scheme.  相似文献   

8.
This article focuses on the problem of fixed-time prescribed performance platoon control for heterogeneous vehicles with unknown dead-zone and actuator saturation. First, an equivalent transformation is developed to approximate the actuator nonlinearity (i.e., dead-zone and saturation), which reduces the complexity of controller design. Then, to guarantee the tracking errors converge to the predetermined region in the given time, a modified prescribed performance function is presented. Based on this, a novel adaptive sliding mode control scheme is developed in the context of fixed-time theory, which is proved to be capable of ensuring individual vehicle stability and string stability in fixed time. In addition, under the proposed control scheme, the convergence time is independent of initial conditions of the system. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed control scheme.  相似文献   

9.
An optimal-tuning nonlinear PID controller design strategy is proposed for hydraulic systems. After an analysis of these systems, an analytic physical dynamical model with dead-zone nonlinearity is derived. A nonlinear PID control scheme with the inverse of the dead zone is introduced to overcome the dead zone in the hydraulic systems. An optimal PID controller is designed to satisfy some desired time-domain performance requirements. Using an estimated process model, the optimal-tuning PID control provides optimal PID parameters even when the process dynamics are time variant. This strategy is implemented in an environment composed of dSPACE, MATLAB, SIMULINK and Real-Time Workshop. The performance of the controller is demonstrated on a hydraulic position control test rig.  相似文献   

10.
This paper studied the trajectory-tracking problem of a hydraulic servo multi-closed-chain mechanism. The nonaffine nonlinear characteristic of the electro-hydraulic actuator and its time-varying uncertainty load resulting from the multi-closed-chain mechanism was taken into consideration in the proposed novel nonlinear control algorithm, that is, the approximate internal model control (AIMC) integrated with a position feedback control in cascade control design. This algorithm improves the trajectory-tracking performance of the hydraulic servomechanism (HSM). To reduce the difficulty in directly utilizing the AIMC for the HSM position trajectory, the complex electro-hydraulic mechanical system was divided into two subsystems: nonaffine nonlinear, and linear. The AIMC controller was designed for the nonaffine nonlinear subsystem to realize velocity trajectory tracking control, whereas a position feedback control was derived for the linear subsystem. The position trajectory tracking control was achieved by congruently combining the AIMC, and the position feedback control based on a recursive design idea. In addition, a complete state-space mathematical model for the HSM was developed and illustrated through simulations and experiments. Based on the proposed approach and the AIMC, the desired position and velocity trajectory tracking was examined on a hydraulic forging manipulator. The stability of the proposed method was analytically derived. Results of the simulations and experiments performed with the hydraulic manipulator demonstrated the effectiveness of the proposed approach.  相似文献   

11.
In this paper, an adaptive control strategy is proposed to investigate the issue of uncertain dead-zone input for nonlinear triangular systems with unknown nonlinearities. The considered system has no precise priori knowledge about the dead-zone feature and growth rate of nonlinearity. Firstly, a dynamic gain is introduced to deal with the unknown growth rate, and the dead-zone characteristic is processed by the adaptive estimation approach without constructing the dead-zone inverse. Then, by virtue of hyperbolic functions and sign functions, a new adaptive state feedback controller is proposed to guarantee the global boundedness of all signals in the closed-loop system. Moreover, the uncertain dead-zone input problem for nonlinear upper-triangular systems is solved by the similar control strategy. Finally, two simulation examples are given to verify the effectiveness of the control scheme.  相似文献   

12.
带有摄动死区输入的未知非线性系统自适应模糊控制   总被引:1,自引:0,他引:1  
李平  金福江 《自动化学报》2010,36(4):573-579
用自适应模糊控制来实现对带有摄动死区输入的一类未知非线性系统的控制. 文中给出了一种新的死区执行器模型, 该模型含有时变并且摄动的执行增益. 通过将死区非线性分解为一个线性类似项, 一个非线性项和一个扰动类似项降低了扰动类似项的上界, 从而可以用更小的控制力度来实现系统的鲁棒性. 利用反步后推技术与非线性参数化的模糊逼近器结合导出控制器, 该设计取消了模糊基函数须事先已知的限制. 本文不仅从理论上证明了所给控制器能够保证闭环系统的稳定性和预期的跟踪性能, 还用仿真实验验证了控制器的有效性.  相似文献   

13.
This paper presents a new fault tolerant controller design method for a class of interconnected non‐Gaussian stochastic distribution system with boundary conditions. In order to obtain the fault estimation value, an observer based fault detection and fault diagnosis algorithms are presented at first, then a collaborative fault tolerant controller is designed based on the adaptive control strategy. Different from most of the existing fault tolerant controllers, when fault occurs the controller need to be reconstructed is for the healthy subsystem in this paper. That is to say, the fault is compensated not by the faulty subsystem itself but by the healthy one. The proposed method is used to a simulation example for demonstration, and the effectiveness is verified.  相似文献   

14.
无刷双馈调速电机无源性分析及自适应控制   总被引:2,自引:2,他引:0  
应用无源性控制理论从能量角度研究了无刷双馈电机控制系统.建立了无刷双馈电机的欧拉方程,并将其分解为电气和机械两个无源子系统的反馈并联,以此说明在设计控制器时只需考虑电气子系统,简化了控制算法.设计了电机的转矩和转速控制器.在此基础上,考虑电机功率及控制绕组电阻在运行中可能发生变化.设计自适应控制器以提高系统的鲁棒性.仿真结果表明此控制策略能快速地跟踪速度给定.动静态响应能力较好,且具有全局稳定、系统鲁棒性好的特点.  相似文献   

15.
运动控制中的鲁棒自适应死区补偿   总被引:1,自引:0,他引:1  
在高精度PD控制器中,死区可能会产生极限环,而且,死区参数往往未知.本文针对有非对称死区的直流伺服系统,设计了一种鲁棒自适应预补偿控制器,这种控制器不仅对死区的不确定性具有鲁棒性,而且对惯性及粘性摩擦等参数的不确定性,及外部扰动都有较强的鲁棒性.采用Lyapunov理论证明了这种控制器能够保证跟踪误差一致最终有界.并且调整调节控制器的参数可以改变跟踪误差.仿真结果表明了这种方法的有效性.  相似文献   

16.
This paper presents a novel control method for accommodating actuator faults in a class of multiple-input multiple-output (MIMO) nonlinear uncertain systems.The designed control scheme can tolerate both the time-varying lock-in-place and loss of effectiveness actuator faults.In each subsystem of the considered MIMO system,the controller is obtained from a backstepping procedure;an adaptive fuzzy approximator with minimal learning parameterization is employed to approximate the package of unknown nonlinear functions in each design step.Additional control effort is taken to deal with the approximation error and external disturbance together.It is proven that the closed-loop stability and desired tracking performance can be guaranteed by the proposed control scheme.An example is used to show the effectiveness of the designed controller.  相似文献   

17.
This paper aims at investigating the fuzzy adaptive control design for uncertain multivariable systems with unknown actuator nonlinearities and unknown control direction that possibly exhibit time-delay. The actuator nonlinearities involve dead-zone or backlash-like hysteresis, while the control direction is closely related to the sign of the control gain matrix. Two fuzzy adaptive controllers are proposed to deal with such an issue. The design of the first controller is mainly carried out in the free time-delay case, while the second control design is performed assuming that the system exhibits time-varying delays. Of practical interest, the adaptive compensation of the effects of the actuator nonlinearities requires neither the knowledge of their parameters nor the construction of their inverse. Furthermore, the lack of knowledge of the control direction is handled by incorporating in the control law a Nussbaum-type function. The effectiveness of the proposed fuzzy adaptive controllers is illustrated through simulation results.  相似文献   

18.
李妍  毛志忠  王琰 《控制理论与应用》2009,26(12):1395-1400
死区非线性存在于许多实际系统中,这将影响控制系统的性能,甚至会造成系统不稳定.为了补偿动态系统中的死区非线性,提出一种基于自适应动态径向基函数网络 (DRBF)的死区补偿控制方法.先用自适应DRBF网络在线补偿未知死区产生的不良影响:对于补偿后的动态系统,设计一个与DRBF网络并联的线性控制器.通过Lyapunov方法证明闭环系统的稳定性.以液压系统为例进行仿真,仿真结果表明本文方法能有效地消除控制系统的稳态误差,减少计算量,而且控制信号没有频繁振荡.  相似文献   

19.
This paper presents a retrofit fault‐tolerant tracking control (FTTC) design method with application to an unmanned quadrotor helicopter (UQH). The proposed retrofit fault‐tolerant tracking controller is developed to accommodate loss‐of‐effectiveness faults in the actuators of UQH. First, a state feedback tracking controller acting as the normal controller is designed to guarantee the stability and satisfactory performance of UQH in the absence of actuator faults, while actuator dynamics of UQH are also considered in the controller design. Then, a retrofit control mechanism with integration of an adaptive fault estimator and an adaptive fault compensator is devised against the adverse effects of actuator faults. Next, the proposed retrofit FTTC strategy, which is synthesized by the normal controller and an additional reconfigurable fault compensating mechanism, takes over the control of the faulty UQH to asymptotically stabilize the closed‐loop system with an acceptable performance degradation in the presence of actuator faults. Finally, both numerical simulations and practical experiments are conducted in order to demonstrate the effectiveness of the proposed FTTC methodology on the asymptotic convergence of tracking error for several combinations of loss‐of‐effectiveness faults in actuators.  相似文献   

20.
This study is concerned with the bumpless transfer problem for switched systems with partial actuator failures, in order to obtain smooth system performance output transition. Taking into account that the system requires a controller switching from current sub-controller to a fault-tolerant sub-controller after actuator fault. And bumpless transfer for control input cannot be traditionally designed when the actuator fault occurs, while performance smoothing can be considered and it is actually the ultimate goal of bumpless transfer. Specifically, the actuator fault model is firstly established and partial actuator fault is considered. Then, the system performance output signal is deemed as the main design variable of bumpless transfer, and closed-loop control systems both previous and after controller switching are constructed. Moreover, by using model matching thought and the adaptive sliding mode control technique, a bumpless transfer compensator design strategy is given to drive the performance output variable (after controller switching) to track the one of reference model. At last, simulation results of numeric and application examples demonstrate the effectiveness of the proposed bumpless transfer strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号