首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Fire Safety Journal》2006,41(2):115-121
Cubes of 100×100×100 mm3 and cylinders of 100×100×515 mm3 were designed and fabricated with C50, C80 and C100 high-performance concrete (HPC) mixed with and without polypropylene (PP) fibres, respectively. These specimens were heated in an electric furnace, approximately following the curve of ISO-834, with a series of target temperatures ranging from 20 to 900 °C. No explosive spalling was observed during the fire test on HPC specimens with PP fibres, whereas some spalling occurred for HPC specimens without PP fibres. The relationship between the mass loss and the exposure temperature was investigated. In addition, the heated and cooled cubes and prisms were tested under monotonic compressive loading and four-point bending loading, respectively. The degradation of both the residual compressive strength and the residual flexural strength was analyzed. Furthermore, the effects of PP fibres on the residual mechanical strength of HPC specimens at elevated temperatures were also investigated. Finally, a fire-resistance design curve relating the residual compressive strength to temperature, as well as a design curve relating the residual flexural strength to temperature, were proposed based on the statistical analysis of the test data.  相似文献   

2.
《Fire Safety Journal》2006,41(2):91-98
An experimental program was designed and carried out to study the residual compressive behaviour of high-performance concrete (HPC) with blast–furnace–slag (BFS) at elevated temperatures ranging from 20 to 800 °C. The residual cube compressive strength is examined and the relationship between the residual compressive strength and temperature is investigated based on the heated cube specimens (100×100×100 mm3) tested on a universal test machine. In addition, on the basis of the heated prism specimens (100×100×300 mm3) tested on an electro-hydromantic rigidity servo test machine, the complete stress–strain curves are obtained, and the effects of temperatures on the residual prism compressive strength, the strain, and the elastic modulus etc are analysed. An approximate formula for the stress–strain relationship of HPC–BFS after exposure to temperatures is proposed.  相似文献   

3.
In this paper, applicability of previously published empirical relations among compressive strength, splitting tensile strength and flexural strength of normal concrete, polypropylene fiber reinforced concrete (PFRC) and glass fiber reinforced concrete (GFRC) to steel fiber reinforced concrete (SFRC) was evaluated; moreover, correlations among these mechanical properties of SFRC were analyzed. For the investigation, a large number of experimental data were collected from published literature, where water/binder ratio (w/b), steel fiber aspect ratio and volume fraction were reported in the general range of 0.25–0.5, 55–80 and 0.5–2.0%, respectively, and specimens were cylinders with size of Φ 150 × 300 mm and prisms with size of 150 × 150 × 500 mm. Results of evaluation on these published empirical relations indicate the inapplicability to SFRC, also confirm the necessity of determination on correlations among mechanical properties of SFRC. Through the regression analysis on the experimental data collected, power relations with coefficients of determination of 0.94 and 0.90 are obtained for SFRC between compressive strength and splitting tensile strength, and between splitting tensile strength and flexural strength, respectively.  相似文献   

4.
A comprehensive laboratory experiments were conducted to improve the mechanical properties of glass fibre reinforced plastic (GRP) waste powder filled concrete using superplasticiser for widening the scope for GRP waste recycling for different applications. It is imperative to note that the 28 days mean compressive strength of concrete specimens developed with 5–15% GRP waste powder using 2% superplasticiser resulted 70.25 ± 1.43–65.21 ± 0.6 N/mm2 which is about 45% higher than that of without the addition of superplasticiser (with GRP waste) and about 11% higher than that of the control concrete (without GRP waste) with 2% superplasticiser. The tensile splitting strength of the concrete showed 4.12 ± 0.05–4.22 ± 0.03 N/mm2 with 5–15% GRP waste powder which is also higher than that of the control concrete (3.85 ± 0.02 N/mm2). The drying shrinkage, initial surface absorption and density of GRP waste filled concrete were evaluated and found better than the desirable quality for use in structural and non-structural applications.  相似文献   

5.
《Energy and Buildings》2006,38(3):207-213
Air ducts and related equipments are used in a large number of buildings having thermal comfort. In this study, energy loss related with air leakage is studied. The leakage measurement setup was produced according to NEN-EN standards and the evaluation of data have been conducted by using power law model. The measurements were made on 300 and 1000 mm diameter single circular ducts, 300 mm × 250 mm and 1000 mm × 500 mm flanged joint rectangular ducts, 300 and 630 mm diameter circular beaded slip joint ducts, 300 mm × 200 mm and 500 mm × 300 mm rectangular flanged and drive slip joint ducts, and an branched air distribution system having different diameters for positive internal pressures. Test results have showed that the most of air leakage is from the joints. The seam contribution to air leakage is relatively lower than the joints. Using sealing gaskets help to improve the air leakage by about 50%.  相似文献   

6.
This work aims to evaluate the possibilities of cementitious materials reinforcement by continuous alkaline resistant AR glass or carbon yarns. Bond flexural tests and flexural tests on 7 × 7 × 28-cm specimens were performed at various ages of the mortar and with various layouts and, volume fractions of yarn. The flexural tests showed the capacity of yarn to improve the strength and ductility of the mortar. A definition of the effectiveness of a yarn as reinforcement is given as proportional to the ratio of the post-cracking maximal load on the product of the strength of yarn and the volume fraction of yarns. The effectiveness of a yarn seems to depend on its structure: the one of the carbon yarn, made up of micrometric filaments, is lower than the one of the glass yarn, made up of millimetric strands. Losses of strength and ductility were observed between 28 days and a year for the glass yarn-reinforced mortars. For the carbon yarn-reinforced mortars, post-cracking strength increases with time.  相似文献   

7.
Multiaxial tensile–compressive tests were performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-performance concrete (HPC) at all kinds of stress ratios after exposure to normal and high temperatures of 20, 200, 300, 400, 500, and 600 °C, using a large static–dynamic true triaxial machine. Friction-reducing pads were three layers of plastic membrane with glycerine in-between for the compressive loading plane; the tensile loading planes of concrete samples were processed by attrition machine, and then the samples were glued-up with the loading plate with structural glue. The failure mode characteristic of specimens and the direction of the crack were observed and described, respectively. The three principally static strengths in the corresponding stress state were measured. The influence of the temperatures, stress ratios, and stress states on the triaxial strengths of HPC after exposure to high temperatures were also analyzed respectively. The experimental results showed that the uniaxial compressive strength of plain HPC after exposure to high temperatures does not decrease completely with the increase in temperature, the ratios of the triaxial to its uniaxial compressive strength depend on brittleness–stiffness of HPC after different high temperatures besides the stress states and stress ratios. On this basis, the formula of a new failure criterion with the temperature parameters under multiaxial tensile–compressive stress states for plain HPC is proposed. This study is helpful to reveal the multiaxial mechanical properties of HPC structure enduring high temperatures, and provides the experimental and theory foundations (testing data and correlated formula) for fire-resistant structural design, and for structural safety assessment and maintenance after fire.  相似文献   

8.
The cracking and subsequent fallout of glazing could significantly affect compartment fire dynamics by creating a new opening for air to enter. Twenty-four 1200×1200×6 mm3 soda-lime glass panes in eight different fixing forms were heated by a 500×500 mm2 N-heptane pool fire to investigate the influence of fixing conditions on glass breakage and fallout. The time of crack initiation, behavior of crack propagation, heat release rates, central gas temperatures, glass surface temperatures and loss of integrity of the glazing assembly were investigated. The relationship between fixing form and crack behavior is discussed, based on the experimental results. The results show that all the cracks initiated at the supporting point and intersected rapidly, causing glass fallout. Mechanical stress caused by supporting pins and thermal stress caused by glass temperature difference (ranging from 48 °C to 159 °C) are the causes of breaking for this kind of curtain wall. It is concluded that various fixing locations have a significant effect on glass breaking. Among the eight cases, the glass panes whose supporting points were located at 10 cm (Case 1) or 5 cm (Case 8) from the edges performed best: these support locations are recommended in practical engineering because of the good fire resistance and structural beauty of such panes.  相似文献   

9.
Mud is one of humankind’s oldest construction materials. The paper presents a technical study of straw-stabilized adobe, prepared in the traditional manner using wooden frames and compacting the mixture manually. The mud is selected from a specific area in the province of León (Spain) where adobes had been employed traditionally from long years ago using two different proportions of straw: 25% and 33% of total volume. The laboratory tests have followed the standard EN protocols. The different tests developed were of two types: for the natural soil granulometric analysis, relative density and Atterberg limits were made; for the adobes the following were done: shrinkage during drying, density, compressive and flexural strength.Results show an average compressive strength of 3.8 N/mm2 and an average flexural strength of 0.68 N/mm2, so it can be stated that traditional adobes can be used as an adequate construction material.  相似文献   

10.
This paper describes the results of an investigation on the resistance of plain and fibre reinforced cement-based foams to sulphate exposure. A synthetic foaming agent was used to produce foamed cementitious composites with essentially a closed cellular structure at 1200 kg/m3, 750 kg/m3, and 475 kg/m3. Polymeric microfibres were introduced at 0% and 0.2% volume fraction to result in 6 mixes. Prismatic specimens were immersed in a sodium sulphate solution to be tested in flexure, after specific intervals of exposure, according to ASTM C1609. A comparison with the response of unexposed specimens reveals that the heavier cement-based foams are more susceptible to sulphate attack and perform poorly with an increase in the duration of exposure. On the other hand, the lightest of the mixes—at 475 kg/m3—registered higher flexural strength and toughness factors up to 30 days of exposure before succumbing to sulphate attack. This self-healing response was attributed to the space available in such highly porous composites that allows for the unhindered growth of ettringite without attendant cracking. The presence of microfibres facilitated self-healing, as evident from the flexural toughness factor.  相似文献   

11.
Rock stress problems induced by overburden or anisotropic stresses are significant to the TBM tunneling. In this paper, the effect of different confining stressed conditions on TBM performance are investigated by using full-scale cutting tests with large intact granite specimens (1000 mm × 1000 mm × 600 mm). In these tests, the effects of confining stresses on the normal force, rolling force, the cutting coefficient and specific energy are analyzed. It is found that the confining stress has significant impact on the normal force and rolling force. Specifically, for the same cutting spacing and penetration depth, the normal force increases with increasing confining stress due to enhancement of the rock resistance strength; meanwhile the rolling force decreases gradually with increasing confining stress. The stress deviation between two confining directions affects the optimum penetration that corresponds to small specific energy. The results provide better understanding of the effect of confining stress on the TBM performance and also recommend some guidelines for TBM tunneling under stressed geological condition.  相似文献   

12.
Experimental tests conducted on 27 square cementitious slabs of 490 × 490 mm simply supported on four edges and subjected to patch load are presented. The slabs had a clear span of 400 × 400 mm and provided with a 445 × 445 mm closed frame of 8 mm diameter steel bar to hold the reinforcement in place and to act as a line support. The test variables were the wire mesh volume fraction: four expanded and two square types; slab thickness: 40, 45, 50 and 60 mm; and the patch load pattern: square and rectangular. The test results showed that as the volume fraction increased the punching strength of the slabs was also increased. Adding a wire mesh to ordinary reinforcement increases significantly the punching resistance at column stub. Moreover, as the loaded area size increases both ductility and stiffness increases and the bridging effect due to the difference in the reinforcement ratio in orthogonal directions was clearly noticed. More research was needed to identify the volume fraction ratio at which the mode of failure alter from flexure to punching.  相似文献   

13.
The depletion of non-renewable resources has become an alarming issue nowadays. Many environmentalists and researchers have been investigating the use of waste materials as a renewable resource for use especially as raw materials in construction. This paper reports on the potential use of waste rice husk ash (RHA) and expanded polystyrene (EPS) beads in producing lightweight concrete bricks. The RHA was used as a cementitious material since it is a lightweight reactive pozzolanic material. RHA was used as partial cement replacement, while the EPS was used as partial aggregate replacement in the mixes. Bricks of 215 mm × 102.5 mm × 65 mm in size were prepared in this study. The engineering properties of the bricks were investigated. Among the properties studied were hardened concrete density, compressive strength and water absorption of the EPS RHA concrete bricks. Scanning electron microscopy (SEM) analysis was also performed on the brick samples. Four types of curing conditions were employed in this study. These include full water curing, air dry curing, 3-day curing and 7-day curing. It was found that the properties of the bricks are mainly influenced by the content of EPS and RHA in the mix and also the curing condition used.  相似文献   

14.
The benefits of adding fibres to concrete, evidenced in the post-cracking behaviour, are strongly influenced not only by the type and content of fibres but also by their orientation. The objective of this study is to evaluate the influence of the casting/placing procedure on the post-peak behaviour of fibre reinforced self-compacting concrete, and its relationship with the mesostructural characteristics of the material (type, distribution and orientation of fibres). Three concretes were prepared using two types of steel fibres of different lengths (50 mm and 30 mm) and a structural type polymer fibre. Beams of 150 × 150 × 600 mm were cast in three different ways: filling the moulds from the centre in accordance with the EN 14651 Standard, pouring concrete from one end of the mould after a flowing along a 5 m length and 150 mm diameter pipe, and finally, filling the moulds vertically. Flexural tests according to the European Standard indicate that the three types of fibres achieve a preferential orientation along horizontal planes, like in conventional vibrated fibre reinforced concrete. The mechanical response of beams cast with longer steel fibres was strongly affected by the casting procedure while the flexural performance of the other two fibre concretes, was less affected. Such results are well in accordance with the density of fibres measured by fibre counting in different cut planes.  相似文献   

15.
C20 and C30 classes of concrete are produced each with addition of Dramix RC-80/0.60-BN type of steel fibers (SFs) at dosages of 0, 30, 60 kg/m3, and their compressive strengths, split tensile strength, moduli of elasticity and toughnesses are measured. Nine reinforced concrete (RC) beams of 300 × 300 × 2000 mm outer dimensions, designed as tension failure and all having the same steel reinforcement, having SFs at dosages of 0, 30, 60 kg/m3 with C20 class concrete, and nine other RC beams of the same peculiarities with C30 class concrete again designed as tension failure and all having the same reinforcement are produced and tested under simple bending. The load versus mid-span deflection relationships of all these RC and steel-fiber-added RC (SFARC) beams under simple bending are recorded. First, the mechanical properties of C20 and C30 classes of concrete with no SFs and with SFs at dosages of 30 and 60 kg/m3 are determined in a comparative way. The flexural behaviours and toughnesses of RC and SFARC beams for C20 and C30 classes of concrete are also determined in a comparative way. The experimentally determined (mid-section load)–(SFs dosage) and (toughness)–(SFs dosage) relationships are given to reveal the quantitative effects of concrete class and SFs dosage on these crucial properties.  相似文献   

16.
This work investigated geopolymeric lightweight concretes based on binders composed of metakaolin with 0% and 25% fly ash, activated with 15.2% of Na2O using sodium silicate of modulus SiO2/Na2O = 1.2. Concretes of densities of 1200, 900 and 600 kg/m3 were obtained by aeration by adding aluminium powder, in some formulations lightweight aggregate of blast furnace slag was added at a ratio binder:aggregate 1:1; curing was carried out at 20 and 75 °C. The compressive and flexural strength development was monitored for up to 180 days. The strength diminished with the reduction of the density and high temperature curing accelerated strength development. The use of the slag had a positive effect on strength for 1200 kg/m3 concretes; reducing the amount of binder used. The thermal conductivity diminished from 1.65 to 0.47 W/mK for densities from 1800 to 600 kg/m3. The microstructures revealed dense cementitious matrices conformed of reaction products and unreacted metakaolin and fly ash. Energy dispersive spectroscopy and X-ray diffraction showed the formation of amorphous silicoaluminate reaction products.  相似文献   

17.
In this research, three types of artificial or engineered stones were compared against two types of natural stones (a limestone and a granite) in what concerns to temperature, thermal ageing and thermal shock effects on flexural strength and Young’s modulus. Temperatures of the thermal treatments, in the range from 20 to 200 °C, were intentionally chosen to simulate some practical applications of this kind of materials, for example, when they are used as kitchen tops. The results reveal the different characteristics of the materials. When tested at temperatures up to 100 °C, engineered stones show much higher values of flexural strength compared to the natural stones; and when tested at ambient temperature after being submitted to rapid cooling (thermal shock) from 200 °C down to 20 °C, engineered stones continue to show higher values of flexural strength compared to the natural stones. For the temperature range from 20 to 200 °C, thermal shock and thermal ageing effects on Young’s modulus are not very pronounced. Young’s modulus (E) of each of the materials was determined at ambient temperature, and the engineered stones keep almost the same value of E after thermal ageing or thermal shock up to 160 °C.  相似文献   

18.
This paper presents results of tests conducted on thin welded rectangular steel stubs filled with concrete that gravel was substituted by 10 mm crushed crystallized slag stone. The studied section was made of two cold steel plates with U shape and welded with electric arc to form a steel box section. The cross-section dimensions were: 100×70×2 mm3. the main studied parameters were the stub height (200, 300, 400, 500 mm), the effect of the in filled concrete, the continued weld and the eccentric force. The tests were carried out 28 days after the date of casting. A total of 20 stubs were tested in a 50 tf machine up to failure, 4 stubs subjected to axial load compression and 16 stubs subjected to eccentric load compression along the minor and major rigidity axis. The aim of the study is to provide some evidences that the use of crushed slag could be integrated in the manufacturing of non-conventional concrete. All failure loads were predicted by using the Euro code 4 and the design method proposed by Z. Vrcelj and B. Uy. From test results, it was confirmed that the length of stubs and the eccentric load had a drastic effect on the load carrying capacity. The failure mode of composite stubs was a local buckling mode with all steel sides deformed outwards. The Euro code 4 loads predictions were generally in good agreement compared with experimental loads and on safe side. The loads results of design method proposed by Vrcelj and B. Uy were generally on safe side compared with experimental load except the columns subject to eccentric load with 400 mm and 500 mm height.  相似文献   

19.
Crumb rubber concrete (CRC) is made by adding rubber crumbs into conventional concrete. This study undertakes an experimental study on the cubic compressive strength, axial compressive strength, flexural strength and splitting tensile strength of CRC specimens at both ambient temperature 20 °C and low temperature ?25 °C. The flexural stress–strain responses were also recorded. The averaged size of rubber crumbs used in the study is about 1.5 mm. Four levels of rubber contents are investigated, which are 0%, 5%, 10% and 15% by volume, respectively. The mix design aimed at 40 MPa of compressive strength and 100 mm of slump for all the CRC specimens. The results show that CRC increases its magnitude in strengths when temperature decreases, which is similar to the case of conventional concrete, but still exhibits ductility in low temperature. The conclusion from this study is that CRC may be more beneficial in its application in low temperature environments than in ambient temperature environments.  相似文献   

20.
An experimental study was conducted on high strength mortar reinforced with steel fibres and hybrid fibres consisting of steel fibre, palm fibre and synthetic fibre (Barchip). The inclusion of fibres was maintained at a volumetric fraction of 2%. The compressive strength, splitting tensile strength, static modulus of elasticity, shrinkage, flexural strength, and flexural toughness were determined to study the effect of the hybrid fibres on the properties of high strength cement mortar (HSCM). The results showed that hybridization of fibres in the quantities 1.5% steel fibres + 0.25% palm fibres + 0.25% Barchip fibres, improved the compressive strength and flexural toughness significantly, and also enhanced the splitting tensile strength and flexural strength of the mortar by about 44% and 140%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号