首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the effects of nanosilica (nS) and silica fume (SF) on rheology, spread on flow table, compressive strength, water absorption, apparent porosity, unrestrained shrinkage and weight loss of mortars up to 28 days. Samples with nS (0–7 wt.%), SF (0–20 wt.%) and water/binder ratio (0.35–0.59), were investigated through factorial design experiments. Nanosilica with 7 wt.% showed a faster formation of structures during the rheological measurements. The structure formation influences more yield stress than plastic viscosity and the yield stress relates well with the spread on table. Compressive strength, water absorption and apparent porosity showed a lack of fit of second order of the model for the range interval studied. In addition, the variation of the unrestrained shrinkage and weight loss of mortars do not follow a linear regression model. The maximum unrestrained shrinkage increased 80% for nS mortars (7 days) and 54% (28 days) when compared to SF mortars in the same periods.  相似文献   

2.
This study develops the compressive strength, water permeability and workability of concrete by partial replacement of cement with agro-waste rice husk ash. Two types of rice husk ash with average particle size of 5 micron (ultra fine particles) and 95 micron and with four different contents of 5%, 10%, 15% and 20% by weight were used. Replacement of cement up to maximum of 15% and 20% respectively by 95 and 5 μm rice husk ash, produces concrete with improved strength. However, the ultimate strength of concrete was gained at 10% of cement replacement by ultra fine rice husk ash particles. Also the percentage, velocity and coefficient of water absorption significantly decreased with 10% cement replacement by ultra fine rice husk ash. Moreover, the workability of fresh concrete was remarkably improved by increasing the content of rice husk ash especially in the case of coarser size. It is concluded that partial replacement of cement with rice husk ash improves the compressive strength and workability of concrete and decreases its water permeability. In addition, decreasing rice husk ash average particle size provides a positive effect on the compressive strength and water permeability of hardened concrete but indicates adverse effect on the workability of fresh concrete.  相似文献   

3.
Curing techniques and curing duration have crucial effects on the strength and other mechanical properties of mortars. Proper curing can protect against moisture loss from fresh mixes. The objective of this experimental work is to examine the compressive strength of ordinary Portland cement mortars (OMs) under various curing regimes and cement fineness. Six different curing methods including water, air, water heated, oven heated, air–water, and water–air were applied to the specimens and also six groups of mortars were used. The results showed that the highest and lowest compressive strengths are attributed to the specimens of OPC mortar water cured using grounded OPC for duration of 6 h (OM–G6–wc) and OPC mortar air cured under room temperature with oven heated after demoulding of the specimens at 60 °C for duration of 20 h (OM–OH–ac), respectively. The maximum levels obtained of compressive strengths at 7, 28, and 90 days are 57.5, 70.3, and 76.0 MPa, respectively.  相似文献   

4.
This study has investigated the joint effect of several factors on the workability and mechanical strength of alkali-activated metakaolin based mortars. The factors analysed through a laboratory experiment of 432 specimens, pertaining to 48 different mortar mixes were, sodium hydroxide concentration (10 M, 12 M, 14 M, 16 M), the superplasticizer content (1%, 2%, 3%) and the percentage substitution of metakaolin by calcium hydroxide in the mixture (5%, 10%). The results show that the workability decreases with the concentration of sodium hydroxide and increases with the amount of calcium hydroxide and superplasticizer. The results also show that the use of 3% of superplasticizer, combined with a calcium hydroxide content of 10%, allows improving the mortar flow from less than 50% to over 90%, while maintaining a high compressive and flexural strength.  相似文献   

5.
This paper compares the effect of two different water retaining agents in single-coat render mortars. The water retaining agent used in the experiments were cellulose methyl–hydroxypropyl and super absorbent polymers with various contents ranging from 0.05 to 0.15 wt.% of the total weight. Properties in fresh and hardened state were investigated. Fresh state properties include rheological behaviour, slump and density. Mechanical strength, transport properties through capillary absorption tests and water retaining capacity were measured in hardened state.Results indicate that MHPC promote the cohesion between the material particles in fresh state, increase the cohesiveness and is more efficient in fixing water molecules within their structure but, may lead to lower strength in the hardened state. SAP particles can also be used as water retaining admixtures, although they influence drastically the rheological parameters, specially the yield stress, traduced in removing water from the mixture, promoting a decrease on workability. However, the use of a plasticiser can help to circumvent this decrease of workability and, the higher flexural and compressive strength results of SAP mixtures indicate that SAP particles are more efficient to promote adequate water retention, even in adverse conditions.  相似文献   

6.
The addition of superplasticizers is an important approach to prepare high performance cement-based materials. The effect of polynaphthalene series superplasticizer (PNS) and polycarboxylate type superplasticizer (PC) on early-age cracking and volume stability of cement-based materials was investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase initial cracking time of mortars, and decrease cracking sensitivity of mortars. As for decreasing cracking sensitivity of mortars, PC > H-UNF (high-thickness-type PNS) > C-UNF (common-thickness-type PNS). To incorporate superplasticizers is apparently to increases free shrinkage of mortars when keeping the constant W/B ratio and the content of cement pastes. As for the effect of controlling volume stability of mortars, PC > C-UNF > H-UNF. Maximum crack width of mortars with PC is lower, but the development rate of maximum crack width of mortars with H-UNF is faster in comparison with control mortars. Flexural and compressive strength of mortars and concretes at 28 days increased with increasing superplasticizer dosages under drying conditions. C-UNF was approximate to H-UNF, but PC was superior to PNS in the aspect of increasing strength of cement-based materials.  相似文献   

7.
In this work, several nanomaterials have been used in cementitious matrices: multi wall carbon nanotubes (MWCNTs) and nano-clays. The physico-mechanical behavior of these nanomaterials and ordinary Portland cement (OPC) was studied. The nano-clay used in this investigation was nano-kaolin. The metakaolin was prepared by thermal activation of nano-kaolin clay at 750 °C for 2 h. The organic ammonium chloride was used to aid in the exfoliation of the clay platelets. The blended cement used in this investigation consists of ordinary Portland cement, carbon nanotubes and exfoliated nano metakaolin. The OPC was substituted by 6 wt.% of cement by nano metakaolin (NMK) and the carbon nanotube was added by ratios of 0.005, 0.02, 0.05 and 0.1 wt.% of cement. The blended cement: sand ratio used in this investigation was 1:2 wt.%. The blended cement mortar was prepared using water/binder ratio of 0.5 wt.% of cement. The fresh mortar pastes were first cured at 100% relative humidity for 24 h and then cured in water for 28 days. Compressive strength, phase composition and microstructure of blended cement were investigated. The results showed that, the replacement of OPC by 6 wt.% NMK increases the compressive strength of blended mortar by 18% compared to control mix and the combination of 6 wt.% NMK and 0.02 wt.% CNTs increased the compressive strength by 29% than control.  相似文献   

8.
The paper presents the results of a hydration study performed in order to explain the significant increase in compressive strength at one day of age observed on steam cured mortars when 25% by mass of cement was replaced with a metakaolin. Two CEM I 52.5R cements, differing in reactivity, and a metakaolin (MK) were used. By means of XRD and thermal analysis carried out on cement pastes, blended or not with MK, the main results showed that the improvement in strength at one day of age could be explained by the occurrence of a pozzolanic reaction due to MK, thermo-activated by the high curing temperature (55 °C). The pozzolanic reaction was observed through the consumption of calcium hydroxide and an increase in the amount of C–S–H and C–S–A–H hydrated phases. This change in the hydration product nature and amount was more pronounced when MK was combined with the less reactive cement, in agreement with the mechanical results on mortars. These results are of great importance for the concrete industry where the current trend is to decrease the clinker content in cements (1 ton of clinker = 1 ton of CO2 released). In particular, the interesting mechanical performance at early ages can be helpful for precast concrete manufacturing.  相似文献   

9.
This paper reports the effects of distinct contents of silica fume (SF), superplasticizer (SP) and water/binder ratio (W/B) in mortars. Samples with SF (0–10 wt%), SP (1.0–1.2 wt%) and W/B ratio (0.30–0.35) were produced. Flow table test and rheometry were used as parameters to formulate mortars by means of a factorial design experiment. Setting time, water absorption, apparent porosity and compressive strength of mortars at 28 days were also determined. Mortar formulations with lower fluidity are restricting when a rheometer was used. For higher torques, adjustments with the regressive equation of the Bingham model are less accurate, since the flow behavior is less constant. On the other hand, mortars with higher fluidity it is limited by spread test. The spread value on flow table test is more related to yield stress than to plastic viscosity. The design experiments identified the main factors (SF, SP and W/B) and their interactions for all properties on the fresh and hardened state, showing that experimental design with multiple regression equations is an appropriate tool to be applied in this case. Water content was the controlling parameter for practically all properties studied.  相似文献   

10.
A powder obtained as a by-product of marble sawing and shaping was characterized from a chemical and physical point of view in order to use it as mineral addition for mortars and concretes, especially for self-compacting concrete. This marble powder showed a very high Blaine fineness value of about 1500 m2/kg, with 90% of particles finer than 50 μm and 50% under 7 μm. For rheological studies, several cement pastes were prepared using marble powder, with and without the addition of an acrylic-based superplasticizer. Water to cementitious materials ratio was also varied. In order to evaluate the effects of the marble powder on mechanical behaviour, many different mortar mixtures were tested, all prepared with sand to cement ratio of 3:1 at about the same workability. Mixtures were evaluated based upon cement or sand substitution by the marble powder. Results obtained show that 10% substitution of sand by the marble powder provided maximum compressive strength at about the same workability.  相似文献   

11.
The purpose of this study is to examine the basic properties of polyester mortars using a fine tailings (FT) from an abandoned mine as a filler. FT with sizes of 10–69 μm is obtained through the centrifugal separation of tailing (TA), and tested for such basic properties, as particle shape, fineness of size distribution, liquid resin absorption, and heavy metal leaching. Polyester mortars with FT and ground calcium carbonate (GC) are prepared with various filler-(filler + binder) ratios and replacements of GC with FT, and tested for working life, flexural and compressive strengths, and chemical corrosion resistance. As a result, FT has almost the same properties as GC in terms of particle shape, fineness of size and liquid resin absorption. The working life of polyester mortars is prolonged with an increased filler-(filler + binder) ratio and replacement of GC with FT. From the vantagepoint of the strength development of the polyester mortars with FT, it is recommended that the filler-(filler + binder) ratio and replacement of GC with FT should be controlled at 50% or less. Mass and strength changes are generally lower in mortars containing FT than in those containing GC in all chemical solutions.  相似文献   

12.
In Malaysia, oil palm shell (OPS) is an agricultural solid waste originating from the palm oil industry. In this investigation old OPS was used for production of high strength lightweight concrete (HSLC). The density, air content, workability, cube compressive strength and water absorption were measured. The effect of five types of curing conditions on 28-day compressive strength was studied. The test results showed that by incorporating limestone powder and without it, it is possible to produce the OPS concretes with 28-day compressive strength of about 43–48 MPa and dry density of about 1870–1990 kg/m3. The compressive strength of OPS HSLC is sensitive to the lack of curing. The water absorption of these concretes is in the range of good concretes.  相似文献   

13.
This paper presents experimental study on the properties of self-compacting concrete (SCC). Portland cement (PC) was replaced with fly ash (FA), granulated blast furnace slag (GBFS), limestone powder (LP), basalt powder (BP) and marble powder (MP) in various proportioning rates. The influence of mineral admixtures on the workability, compressive strength, ultrasonic pulse velocity, density and sulphate resistance of SCC was investigated. Sulphate resistance tests involved immersion in 10% magnesium sulphate and 10% sodium sulphate solutions for a period of 400 days. The degree of sulphate attack was evaluated using visual examination and reduction in compressive strength. The test results showed that among the mineral admixtures used, FA and GBFS significantly increased the workability and compressive strength of SCC mixtures. Replacing 25% of PC with FA resulted in a strength of more than 105 MPa at 400 days. Moreover, the presence of mineral admixtures had a beneficial effect on the strength loss due to sodium and magnesium sulphate attack. On the other hand, the best resistance to sodium and magnesium sulphate attacks was obtained from a combination of 40% GBFS with 60% PC.  相似文献   

14.
The use of calcined clay, in the form of metakaolin (MK), as a pozzolanic material for mortar and concrete has received considerable attention in recent years. The present paper describes the results of a research project initiated to study the calcination of local kaolin at various temperatures (650–950 °C) and durations (2, 3 and 4 h) to produce MK with a high pozzolanic activity. The pozzolanic activity was assessed by 28-days compressive strength and hydration heat methods. The maximum identified activity was obtained at 850 °C for 3 h duration. An increase of both hydration heat and compressive strength was obtained when ordinary Portland cement was replaced by 10% MK. The use of ternary blended cement improves the early age and the long-term compressive strength. The durability was also enhanced as better acidic resistance was observed.  相似文献   

15.
This paper reports on the use of design of experiments for the formulation of sulfobelite clinkers. Samples made of 30–70 wt.%C2S, 20–60 wt.%C4A3? and 10–25 wt.%C4AF were formulated. The red mud generated from the Bayer process was used in some formulations as source of iron and aluminum. X-ray diffraction was used to define the high and low limits of phase compositions. Estimations of CO2 emissions were also conducted. Derived cements (5 wt.% gypsum) were cured, and the temperature of hydration, compressive strength and density were determined. The Rietveld refinement showed that the percentages of phases in the clinkers are close to the expected ones. The presence of C4A3? is crucial to improve the mechanical strength at early ages. The use of red mud leads to the formation of C3A and then the derived cements show faster hydration. In addition, C2S is the major responsible for the generation of CO2 emissions.  相似文献   

16.
A comparative study has been performed on the sulfate resistance of Portland limestone cement (PLC) mortars exposed to extraordinary high sulfate concentrations (200 g/l). PLCs have been prepared by using two types of clinkers having different C3S/C2S ratios and interstitial phase morphologies. Blended cements have been prepared by replacing 5%, 10%, 20% and 40% of clinker with limestone. Cubic (50 × 50 × 50 mm) and prismatic (25 × 25 × 285 mm) cement mortars were prepared. After two months initial water curing, these samples were exposed to three different sulfate solutions (Na2SO4 at 20 °C and 5 °C, MgSO4 at 5 °C). Solutions were not refreshed and pH values of solutions were monitored during the testing stage. The compressive strength and length changes of samples have been monitored for a period of 1 year. Additional microstructural analyses have been conducted by XRD and SEM/EDS studies. Results indicated that in general, limestone replacement ratio and low temperature negatively affect the sulfate resistance of cement mortars. Additionally, clinkers of high C3S/C2S ratios with dendritic interstitial phase structure were found to be more prone to sulfate attack in the presence of high amounts of limestone.From the results, it is postulated that in the absence of solution change, extraordinary high sulfate content modified the mechanism of sulfate reactions and formation of related products. At high limestone replacement ratios, XRD and SEM/EDS studies revealed that while ettringite is the main deterioration product for the samples exposed to Na2SO4, gypsum and thaumasite formation were dominant products of deterioration in the case of MgSO4 attack. It can be concluded that, the difference between reaction mechanisms of Na2SO4 and MgSO4 attack to limestone cement mortars strongly depends on the pH change of sulfate solutions.  相似文献   

17.
This paper presents the results of a study that investigated the properties of concrete made with dune sand. Different control concrete mixtures using ordinary Portland cement (OPC) with a minimum design compressive strength of 40 N/mm2 were prepared. The amount of fine aggregates constituted about 36% by weight of all the aggregates. The workability ranged from low of 16 mm to a high of 122 mm. For each control mix, other mixtures were prepared in which the fine aggregates were replaced by different percentages of dune sand ranging from 10% to 100%. The effect of dune sand on the workability, compressive strength, tensile strength, modulus of elasticity and initial surface absorption test (ISAT) was studied. Experimental results show an improvement in the workability of concrete when fine aggregates were partially replaced by dune sand. An increase in slump was measured with increase in dune sand content. However, at high dune sand contents (above 50%); the slump starts to decrease with an increase in dune sand. Generally, the strength values decrease with increase in dune sand replacement. The strength loss was not found considerable as the maximum reduction was less than 25% when fine aggregates were fully replaced by dune sand. The absorption characteristics of concrete made with OPC as measured by the (ISAT) generally increased with higher dune sand contents.  相似文献   

18.
This work deals with the frost resistance of blended cements containing calcined paper sludge (source for metakaolin) as partial Portland cement replacements. Freeze–thaw tests were performed on blended cement mortars containing 0%, 10% and 20% waste paper sludge calcined at 650 °C for 2 h. Cement mortar specimens were exposed to freezing and thawing cycles until the relative dynamic modulus of elasticity fell below 60%. The performance of the cement mortars was assessed from measurements of weight, ultrasonic pulse velocity, compressive strength, mercury intrusion porosimetry and SEM. Failure of the control cement mortar occurred before 40 freeze/thaw cycles, while cement mortar containing 20% calcined paper sludge failed after 100 cycles. After 28 and 62 freezing and thawing cycles, cement blended with 10% and 20% calcined paper sludge exhibited a smaller reduction in compressive strength than the control cement.  相似文献   

19.
Polymer modified steel fiber-reinforced concretes were produced with addition of both steel fibers and a styrene butadiene rubber emulsion (SBR). Both flexural and compressive strength of the composites after 28 days curing were tested. Microstructures of the composites were analyzed by using scanning electron microscope and mercury intrusion porosimetry. Results show that the addition of steel fibers increases both flexural and compressive strength of the composites. The flexural strength increases significantly when containing 3–10 wt.% SBR. The optimal use of SBR is 5 wt.%. However, the compressive strength may decrease with the addition of SBR. When the addition arrives 10 wt.%, a 16% reduction is observed. The overall porosity and pore size distribution of the composites vary with SBR content. The addition of 3 or 5 wt.% SBR can refine the pore size distribution. Interweaving polymer films were observed in the composites.  相似文献   

20.
This study focuses on the comprehensive utilization of propylene oxide sludge (POS). High performance propylene oxide sludge aggregate (POSA), whose main hydrated phase is tobermorite, was prepared by the hydrothermal synthesis of POS and silica materials under the condition of 180 °C saturated steam. The factors affecting the performance of the aggregate were investigated systematically by orthogonal experiments, thus aggregate with cylinder compressive strength between 6.14 and 13.52 MPa, bulk density between 882 and 1163 kg/m3, apparent density between 1515 and 1916 kg/m3, 1 h water absorption rate between 4% and 14%, 24 h water absorption rate between 11% and 19%, the mass loss of freezing and thawing between 1.63% and 3.92% was achieved. By single-factor analysis, it was shown that cylinder compressive strength and specific strength of propylene oxide sludge shell-aggregate (POSS-A) increases by 21.3% and 13.9%, respectively, in contrast to the POSA with no shell. At the same time, 1 h water absorption rate and 24 h water absorption rate decreases by 57% and 20%, respectively. The compressive strength of the concrete with POSS-A as coarse aggregate reaches 80 MPa, which is 8.1% higher than that of the crushed stone concrete. In addition, the density gets lowered by 17%. The HVEP results of analysis of the aggregate imply that heavy metals are solidified inside aggregate and the POSA thus fabricated is non-hazardous for construction use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号