首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a gradient field representation using an analytical regularization of a hypersingular boundary integral equation for a two-dimensional time harmonic wave equation called the Helmholtz equation. The regularization is based on cancelation of the hypersingularity by considering properties of hypersingular elements that are adjacent to a singular node. Advantages to this regularization include applicability to evaluate corner nodes, no limitation for element size, and reduced computational cost compared to other methods. To demonstrate capability and accuracy, regularization is estimated for a problem about plane wave propagation. As a result, it is found that even at a corner node the most significant error in the proposed method is due to truncation error of non-singular elements in discretization, and error from hypersingular elements is negligibly small.  相似文献   

2.
In this paper the direct boundary integral equation method is applied to dynamic fracture mechanics, and the computational results are compared with experimental values. The comparison shows that the authors' computation is successful.  相似文献   

3.
Boundary integral equation (boundary element) methods have the advantage over other commonly used numerical methods that they do not require values of the unknowns at points within the solution domain to be computed. Further benefits would be obtained if attention could be confined to information at one small part of the boundary, the particular region of interest in a given problem. A local boundary integral equation method based on a Taylor series expansion of the unknown function is developed to do this for two-dimensional potential problems governed by Laplace's equation. Very accurate local values of the function and its derivatives can be obtained. The method should find particular application in the efficient refinement of approximate solutions obtained by other numerical techniques.  相似文献   

4.
A simplified approach for imposing the boundary conditions in the local boundary integral equation (LBIE) method is presented. The proposed approach employs an integral equation derived using the fundamental solution and the Green’s second identity when the collocation node is at the boundary of the solution domain (global boundary). The subdomains for the nodes placed at the global boundary preserve their circular shapes; avoiding in this way any integration over the global boundary. Consequently, the difficulties related to evaluation of singular integrals and determination of intersection points between the global and local circular boundaries are avoided. So far, attempts to avoid these issues have focused on using schemes based on meshless approximations. The downside of such schemes is that the weak formulation is abandoned. In this study the interpolation of field variables over the boundaries of the subdomains is carried out using the radial basis function approximation. Numerical examples show that the proposed approach despite its simplicity, achieves comparable accuracy to the classical treatment of the boundary conditions in the LBIE.  相似文献   

5.
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the soultion of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions.  相似文献   

6.
A new boundary integral equation method of three-dimensional crack analysis   总被引:2,自引:0,他引:2  
Introducing the mode II and mode III dislocation densities W 2(y) and W 3(y) of two variables, a new boundary integral equation method is proposed for the problem of a plane crack of arbitrary shape in a three-dimensional infinite elastic body under arbitrary unsymmetric loads. The fundamental stress solutions for three-dimensional crack analysis and the limiting formulas of stress intensity factors are derived. The problem is reduced to solving three two-dimensional singular boundary integral equations. The analytic solution of the axisymmetric problem of a circular crack under the unsymmetric loads is obtained. Some numerical examples of an elliptical crack or a semielliptical crack are given. The present formulations are of basic significance for further analytic or numerical analysis of three-dimensional crack problems.  相似文献   

7.
This paper is concerned with discretization and numerical solution of a regularized version of the hypersingular boundary integral equation (HBIE) for the two-dimensional Laplace equation. This HBIE contains the primary unknown, as well as its gradient, on the boundary of a body. Traditionally, this equation has been solved by combining the boundary element method (BEM) together with tangential differentiation of the interpolated primary variable on the boundary. The present paper avoids this tangential differentiation. Instead, a “pure” BEM method is proposed for solving this class of problems. Dirichlet, Neumann and mixed problems are addressed in this paper, and some numerical examples are included in it.  相似文献   

8.
In this paper, the degenerate scale for plate problem is studied. For the continuous model, we use the null-field integral equation, Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to examine the solvability of BIEM for circular thin plates. Any two of the four boundary integral equations in the plate formulation may be chosen. For the discrete model, the circulant is employed to determine the rank deficiency of the influence matrix. Both approaches, continuous and discrete models, lead to the same result of degenerate scale. We study the nonunique solution analytically for the circular plate and find degenerate scales. The similar properties of solvability condition between the membrane (Laplace) and plate (biharmonic) problems are also examined. The number of degenerate scales for the six boundary integral formulations is also determined. Tel.: 886-2-2462-2192-ext. 6140 or 6177  相似文献   

9.
This paper presents a double layer potential approach of elastodynamic BIE crack analysis. Our method regularizes the conventional strongly singular expressions for the traction of double layer potential into forms including integrable kernels and 0th, 1st and 2nd order derivatives of the double layer density. The manipulation is systematized by the use of the stress function representation of the differentiated double layer kernel functions. This regularization, together with the use of B-spline functions, is shown to provide accurate numerical methods of crack analysis in 3D time harmonic elastodynamics.  相似文献   

10.
An equation solver for the large unsymmetric systems of linear equations arising in the application of the boundary integral equation method to problems of linear elasticity in homogeneous or piecewise homogeneous solids is presented. The solver uses Gaussian elimination. The advantages of the solver over many existing eliminational or iterational methods are that it ignores many of the large groups of zeros that occur in piecewise homogeneous work, and also restrains growth of the number of non-zero matrix entries. Memory requirements and computation times therefore are reduced for many piecewise homogeneous problems.  相似文献   

11.
12.
The authors present a new method to compute the current distribution at the surface of a conducting piece in a high frequency varying field. This method uses boundary integral equation techniques and allows at a very low computing cost to define in three dimensions the hot and cold parts of such a piece before case hardening. The integral equations have to be solved only on the boundary, so the number of dimensions of the mathematical problem is reduced from three to two. Results of current distribution on the surface of a complicated shape piece as a toothed gear are given as an example.  相似文献   

13.
14.
Plates governed by Kirchhoff's equation have been analysed by the boundary integral equation method using the fundamental solution of the biharmonic equation. In the case of supported plates, the boundary conditions permit the uncoupling of the field equation into two harmonic equations that originate, due to the nature of the fundamental solution, easier integration kernels and a simpler system of equations. The calculation of bending and twisting moments and transverse shear force can be formed, combining derivatives of the integral equation which defines the expression of the deflection on any point of the plate. The uncoupling of the biharmonic equation into two Poisson's equations involves the discretization of the domain of the studied problems. Nevertheless, the unknown quantity of the problem does not appear in the domain integrations for which a refined discretization is unnecessary. In the paper, however, a numerical alternative is considered to express the domain integral by means of boundary integrals. In this way, we need only discretize the boundary of the plate, making it necessary to solve a supplementary system of equations in order to calculate the coefficients of the approximation carried out.  相似文献   

15.
Summary A Neumann boundary value problem for the equation rot –=0 is considered in 29-1 and 29-2. The approach is by transforming the boundary value problem into an equivalent boundary integral equation deduced from a representation formula for solutions of rot –=0 based on the fundamental solution of the Helmholtz equation. In particular, for the two-dimensional case a detailed discussion of the integral equation is carried out including the approximate solution by numerical integration.  相似文献   

16.
An approach using indirect boundary integral equation method is proposed to determine the permeance between ferromagnetic poles in axisymmetric and three-dimensional magnetic systems. A generalised mathematical model is given for both types of magnetic systems. It consists of Fredholm integral equations of the first kind with respect to fictitious magnetic charge density sought in the form of simple layer potential. The system of boundary integral equations is solved using the method of mechanical quadratures. The approach is implemented in its own computer code. Results are presented for axisymmetric poles of electromagnets (cylinders, cones and frustum cones) and for a three-dimensional clapper-type system. Comparisons with known formulas are made and their accuracies are estimated. The approach presented is useful at the stage of preliminary design of magnetic systems. It is also applicable to computation of capacitances and electrical conductances  相似文献   

17.
A boundary integral equation method is proposed for the numerical solution of the two-dimensional diffusion equation subject to a non-local condition. The non-local condition is in the form of a double integral giving the specification of mass in a region which is a subset of the solution domain. A specific test problem is solved using the method.  相似文献   

18.
This paper investigates the transient wave scattering by a crack by means of the Boundary Integral Equation Method (BIEM). The author has developed a new formulation to solve the BIE for the Crack Opening Displacement (COD). The resolution is done directly in the time domain. The solution is represented by means of a retarded double layer potential, and the resulting BIE, with the COD as unknown, has a hypersingular kernel. The corresponding difficulty is overcome by using a variational method. We present the application of this method to an antiplane crack, describe the approximate problem and finally give some numerical results.  相似文献   

19.
Two methods of forming regular or hypersingular boundary integral equations starting from an interior integral representations are discussed. One method involves direct treatment of the singularities such as Cauchy principal value and/or finite-part interpretation of the integrals and the other does not. By either approach, theory places the same restrictions on the smoothness of the density function for the integrals to exist, assuming sufficient smoothness of the geometrical boundary itself. Specifically, necessary conditions on the smoothness of the density function for meaningful boundary integral formulas to exist as required for the collocation procedure are established here. Cases for which such conditions may not be sufficient are also mentioned and it is understood that with Galerkin techniques, weaker smoothness requirements may pertain. Finally, the bearing of these issues on the choice of boundary elements, to numerically solve a hypersingular boundary integral equation, is explored and numerical examples in 2D are presented.  相似文献   

20.
The paper deals with the multidomain Boundary Element Method (BEM) for modelling 2D complex turbulent flow using low Reynolds two equation turbulence models. While the BEM is widely accepted for laminar flow this is the first case, where this method is applied for a complex flow problems using kε turbulence model. The integral boundary domain equations are discretised using mixed boundary elements and a multidomain method also known as subdomain technique. The resulting system matrix is overdetermined, sparse, block banded and solved using fast iterative linear least squares solver. The simulation of turbulent flow over a backward step is in excellent agreement with the finite volume method using the same turbulent model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号