首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents investigation of how the usage of bottom ash (BA), granulated blast furnace slag (GBFS), and combination of both of these materials as fine aggregate in concrete affects the concrete durability. To assess durability characteristics of concrete, durability tests were conducted and the results were evaluated comparing with reference concrete. Three series concrete were produced. GBFS, BA and GBFS+BA are replaced the 3–7 mm-sized aggregate. Five test groups were constituted with the replacement percentages as 10%, 20%, 30%, 40% and 50% in each series. These by-products were used as non-ground form in the concrete. Durability properties of the concretes were compared in order to study the possible advantages of different replacement ratios. According to results, GBFS and BA affects some durability properties of concrete positively in case of it is used as fine aggregate. Resistance to high temperature and surface abrasion are positively affected properties. Capillarity, drying-wetting and freezing-thawing resistance of the concrete can be accepted to some extent. Properties of by-products and its replacement ratio are controlling the influence level and direction. Comparison of the SEM images and test results show that chemical and physical properties of GBFS and BA are the main factors affecting the concrete durability. It is concluded that it is possible to produce durable concrete by using GBFS and BA as fine aggregate.  相似文献   

2.
This paper presents the results of a study that investigated the properties of concrete made with dune sand. Different control concrete mixtures using ordinary Portland cement (OPC) with a minimum design compressive strength of 40 N/mm2 were prepared. The amount of fine aggregates constituted about 36% by weight of all the aggregates. The workability ranged from low of 16 mm to a high of 122 mm. For each control mix, other mixtures were prepared in which the fine aggregates were replaced by different percentages of dune sand ranging from 10% to 100%. The effect of dune sand on the workability, compressive strength, tensile strength, modulus of elasticity and initial surface absorption test (ISAT) was studied. Experimental results show an improvement in the workability of concrete when fine aggregates were partially replaced by dune sand. An increase in slump was measured with increase in dune sand content. However, at high dune sand contents (above 50%); the slump starts to decrease with an increase in dune sand. Generally, the strength values decrease with increase in dune sand replacement. The strength loss was not found considerable as the maximum reduction was less than 25% when fine aggregates were fully replaced by dune sand. The absorption characteristics of concrete made with OPC as measured by the (ISAT) generally increased with higher dune sand contents.  相似文献   

3.
In this work, the effect of Granulated Blast Furnace Slag (GBFS) and fly ash (FA) addition on the strength properties of lightweight mortars containing waste Poly-ethylene Terephthalate (PET) bottle aggregates was investigated. Investigation was carried out on three groups of mortar specimens. One made with only Normal Portland cement (NPC) as binder, second made with NPC and GBFS together and, third made with NPC and FA together. The industrial wastes mentioned above were used as the replacement of cement on mass basis at the replacement ratio of 50%. The size of shredded PET granules used as aggregate for the preparation of mortar mixtures were between 0 and 4 mm. The waste lightweight PET aggregate (WPLA)–binder ratio (WPLA/b) was 0.60; the water–binder (w/b) ratios were determined as 0.45 and 0.50. The dry unit weight, compressive and flexural–tensile strengths, carbonation depths and drying shrinkage values were measured and presented. The results have shown that modifying GBFS had positive effects on the compressive strength and drying shrinkage values (after 90 days) of the WPLA mortars. However, FA substitution decreased compressive and flexural–tensile strengths and increased carbonation depths. Nevertheless a visible reduction occurred on the drying shrinkage values of FA modifying specimens more than cement specimens and GBFS modified specimens. The test results indicated that, GBFS has a potential of using as the replacement of cement on the WPLA mortars by taking into consideration the characteristics. But using FA as a binder at the replacement ratio of 50% did not improve the overall strength properties. Although it was thought that, using FA as binder at the replacement ratio of 50% for the aim of production WPLA concrete which has a specific strength, would provide advantages of economical and ecological aspects.  相似文献   

4.
The development of self-compacting concrete is considered as a milestone achievement in concrete technology due to several advantages. In order to be self-compactable the fresh concrete must show high fluidity besides good cohesiveness. For the purpose of evaluating these properties, several concrete mixtures were prepared with a water to cement ratio of 0.45 in the presence of an acrylic-based superplasticizer at a dosage ranging from 1% to 2% by weight of very fine material fraction (maximum 150 μm). Either limestone powder or fly ash or recycled aggregate powder (that is a powder obtained from the rubble recycling process) were used as mineral addition, in order to assure adequate rheological properties, in terms of cohesiveness, in the self-compacting concretes. Preliminary rheological tests were carried out on cement pastes containing these mineral additions. In some cases, recycled instead of natural aggregate was used by substituting either the coarse or the fine aggregate fraction. The fresh concrete properties were evaluated through slump flow, L-box test and segregation resistance. Compressive strength of concrete was determined at 1, 3, 7 and 28 days of wet curing. Results obtained showed that an optimization of self-compacting concrete mixture seems to be achievable by the simultaneous use of rubble powder and coarse recycled aggregate with improved fresh concrete performance and unchanged concrete mechanical strength.  相似文献   

5.
This study investigated the effect of elevated temperature on the mechanical and physical properties of concrete specimens obtained by substituting cement with finely ground pumice (FGP) at proportions of 5%, 10%, 15% and 20% by weight. To determine the effect of silica fume (SF) additive on the mechanical and physical properties of concrete containing FGP, SF has been added to all series except for the control specimen, which contained 10% cement by weight instead. The specimens were heated in an electric furnace up to 400, 600 and 800 °C and kept at these temperatures for one hour. After the specimens were cooled in the furnace, ultrasonic pulse velocity (UPV), compressive strength and weight loss values were determined. The results demonstrated that adding the mineral admixtures to concrete decreased both unit weight and compressive strength. Additionally, elevating the temperature above 600 °C affected the compressive strength such that the weight loss of concrete was more pronounced for concrete mixtures containing both FGP and SF. These results were also supported by scanning electron microscope (SEM) studies.  相似文献   

6.
《Building and Environment》2005,40(11):1492-1504
The Taguchi method was used to determine optimum conditions for tire rubber in asphalt concrete with Marshall Test. The tire rubber in asphalt concrete was explored under different experimental parameters including tire rubber gradation (sieve #10–40), mixing temperature (155–175 °C), aggregate gradation (grad. 1–3), tire rubber ratio (0–10% by weight of asphalt), binder ratio (4–7% by weight of asphalt), compaction temperature (110–135 °C), and mixing time (5–30 min). The optimum conditions were obtained for tire rubber gradation (sieve #40), mixing temperature (155 °C), aggregate gradation (grad. 1), tire rubber ratio (10%), binder ratio (5.5%), compaction temperature (135 °C), mixing time (15 min).  相似文献   

7.
This study investigates the effects of elevated temperatures on the residual mechanical performance of concrete produced with recycled rubber aggregate (RRA). Four different concrete compositions were prepared: a reference concrete (RC) made with natural coarse aggregate and three concrete mixes with replacement rates of 5%, 10% and 15% of natural fine and coarse aggregate by RRA from used tyres. Specimens were exposed for a period of 1 h to temperatures of 400 °C, 600 °C and 800 °C, after being heated in accordance with ISO 834 time–temperature curve. After cooling down to ambient temperature, the compressive strength and the splitting tensile strength were evaluated and compared with reference values obtained prior to fire exposure. For the replacement rates used in the present experiments, the obtained results show that concrete made with recycled rubber aggregate (CRRA) present a thermal response that is roughly similar to that of RC; in addition, although residual mechanical properties of CRRA are noticeably more affected than those of RC, particularly for higher exposure temperatures, the relative reduction should not prevent it from being used in structural applications.  相似文献   

8.
This paper presents experimental study on the properties of self-compacting concrete (SCC). Portland cement (PC) was replaced with fly ash (FA), granulated blast furnace slag (GBFS), limestone powder (LP), basalt powder (BP) and marble powder (MP) in various proportioning rates. The influence of mineral admixtures on the workability, compressive strength, ultrasonic pulse velocity, density and sulphate resistance of SCC was investigated. Sulphate resistance tests involved immersion in 10% magnesium sulphate and 10% sodium sulphate solutions for a period of 400 days. The degree of sulphate attack was evaluated using visual examination and reduction in compressive strength. The test results showed that among the mineral admixtures used, FA and GBFS significantly increased the workability and compressive strength of SCC mixtures. Replacing 25% of PC with FA resulted in a strength of more than 105 MPa at 400 days. Moreover, the presence of mineral admixtures had a beneficial effect on the strength loss due to sodium and magnesium sulphate attack. On the other hand, the best resistance to sodium and magnesium sulphate attacks was obtained from a combination of 40% GBFS with 60% PC.  相似文献   

9.
The experimental studies on the behaviour of recycled aggregate concrete-filled steel tube (RACFST) stub columns after exposed to high temperatures are reported in this paper. Forty specimens, including 32 RACFST stub columns and 8 normal concrete-filled steel tube (CFST) stub columns as reference, were tested, and the failure pattern, load versus strain relation and ultimate strength of the specimens were presented and analysed. Five types of concrete were produced: one reference concrete with natural aggregates, two concrete mixes with recycled coarse aggregate (RCA) replacement ratios of 50% and 100%, and two concrete mixes with recycled fine aggregate (RFA) replacement ratios of 50% and 100%. The specimens were exposed to 300 °C, 600 °C and 800 °C for 3 h. The test results showed that, due to the existence of the recycled aggregates, the post-fire performance of RACFST stub columns was lower than the corresponding normal CFST specimens under the same maximum temperature suffered, and the RACFST specimens with RCA had a better behaviour than those with RFA under the same recycled aggregate replacement ratio.  相似文献   

10.
This paper describes the results of research aimed at studying the possible usage of bottom ash (BA) and granulated blast-furnace slag (GBFS) in production of plain concrete elements. Sufficient number of briquettes, paving blocks and kerbs specimens containing GBFS and BA as fine aggregate replacement were produced in laboratory. Then, some of tests were conducted for investigating durability and mechanical properties of these specimens. Unit weight, compression strength and freeze–thaw tests were conducted for briquette specimens. Compression strength, freeze–thaw, water absorption and surface abrasion tests were conducted for paving blocks. Surface abrasion and flexural tensile strength tests were conducted for kerb specimens. While compression strength was decreased slightly, durability characteristics such as resistance of freeze–thaw and abrasion were improved. The results showed that usage of partially fine aggregate of these industrial by-products has more beneficial effects on durability characteristics of plain concrete elements.  相似文献   

11.
In this study, the effects of aggregate type on the coefficient of thermal expansion of self-consolidating concrete produced with normal (SCC) and lightweight aggregate (SCLC) at elevated temperature were investigated. In experiments, two aggregate types, crushed limestone and pumice, were used. Different combinations of water/powder ratio and superplasticizer dosage levels were prepared for the SCC and SCLC mixtures. The total powder content (cement and mineral additives) was constant in the experiments. Thermal test was performed to accurately characterize the coefficient of thermal expansion (CTE) of SCC and SCLC aged 28 days using the dilatometer. The CTEs of SCC and SCLC were defined by measuring the linear change in length of concrete specimens subjected to a range of temperatures. Test temperatures were varied from 20 to 1000 °C at a heating rate of 5 °C/min. The results, in general, showed that SCC has higher CTE than normal weight concrete and that lightweight aggregate reduced the CTE of SCC due to their porous structure. The aggregate type has significant influence on the thermal expansion of SCC.  相似文献   

12.
Pop-out and disaggregation of aggregate in a 1-year old cement concrete pavement originally mixed with air-entraining (AE) water-reducing agent was observed after the pavement had been exposed to ethylene glycol based snow-melting agent on the surface in the winter. The study used: gas chromatography–mass spectrometry (GC–MS) tests, 1H Nuclear Magnetic Resonance (NMR) tests, X-ray fluorescence analysis, emission spectral analysis (ICP), elution tests in anion type surfactant solution conducted for mortar and aggregate taken from the cement concrete where pop-out had occurred, as well as samples made by cement paste in the laboratory. Tests of the tensile strength, thermal-stress, and three-dimensional crack analysis by micro-focus computerized tomography (CT) scanner were conducted for specimens (2.5 × 2.5 × 10 cm) taken from the cement concrete where pop-out had occurred and with cement concrete samples made in the laboratory. Microscope observations and Electron Probe Micro Analyzer (EPMA) analysis were conducted for thin samples (2.5 × 2.5 cm and 20 μm thick) taken from the cement concrete where pop-out had occurred. The tests results showed that organic compounds contained in the cement reacted with the cement during the hardening process, generating cracks and gel in the cement paste. It was established that these caused the pop-out of the aggregate, together with the effects of the ethylene glycol based snow-melting agent that the cement concrete had been exposed to. No pop-out or disaggregation of aggregate were found in cement concrete at a repaired section, at the same location, with aggregate of low absorbing water ratio in this cold region and in place for 2 years.  相似文献   

13.
This paper presents the results of a study on the potential use of petroleum-contaminated soil (PCS) in the manufacturing of concrete blocks. PCS was obtained from Fahud asset area in northern Oman, where contaminated soils are typically transported for treatment. Hollow blocks of size 400 × 200 ×200 mm, widely used in Oman, were manufactured with a mix proportion of 1:2:4:0.8 for cement, coarse aggregate, sand, and water, respectively. The coarse aggregate had a 10 mm maximum aggregate size. PCS was subjected to the toxicity characteristic leaching procedure (TCLP). The chemical analysis of the extract indicated that the concentrations of metals and organic compounds did not exceed the maximum contaminant levels set by USEPA for TCLP extracts. Different mixes were prepared by replacing the sand with PCS with percentages up to 80% by sand weight in the mix. Five different tests were conducted on the concrete blocks: density, compressive strength, absorption, compressive strength of a masonry column, and thermal conductivity. The compressive strength test was conducted after 14 and 28 days of curing. The other tests were performed after 28 days of curing. Results indicated that PCS can be used with a replacement percentage up to 60% to produce concrete blocks meeting the Omani Standard specifications. The results also indicate potential deterioration when more than 60% PCS are used.  相似文献   

14.
When concrete elements are partially immersed in the sulfate environment, researchers always attribute “salt weathering”, “salt crystallization” or “physical attack” to the failure of concrete. However, there were few micro-analysis evidences to support this view. In this paper, an attempt was carried out to study whether salt weathering is really responsible for the concrete damage.As we know, the interfacial transition zone (ITZ) between paste and aggregate plays a determining role in the performance of concrete. In this paper, we focused on the role of ITZ in “salt weathering” on concrete. Concrete specimens, made with coarse aggregate and cement paste, were partially exposed to a 5% sodium sulfate solution and a 5% magnesium sulfate solution respectively, in a controlled environment (20 ± 2 °C, and 60 ± 5% RH). After 8 months of exposure, a micro-analysis is performed by means of XRD, ESEM and EDS. The experimental results showed that, in the upper part of concrete above the Na2SO4 solution, damage initiated in the ITZ between paste and aggregate due to the formation of ettringite and gypsum. Salt crystallization cannot occur on the paste surface in the ITZ, but it was found on the aggregate surface after damage initiation due to chemical sulfate attack. On the other hand, salt crystallization could occur in the carbonated concrete. There was no trace of salt crystallization in the concrete partially exposed to MgSO4 solution.  相似文献   

15.
Several research works have been carried out to study the fresh and hardened properties of concrete containing crumb rubber (rubbercrete) as a replacement of fine aggregate. The outcomes of these studies have highlighted the advantages and disadvantages of rubbercrete compared with conventional concrete mixtures. In view of the fact that rubbercrete is being used in the construction industry for a variety of purposes, evaluations of the rubbercrete mixtures using non-destructive tests such as rebound hammer (RH) and ultrasonic pulse velocity (UPV) to establish valid relationships is worthwhile. Fifteen mixtures with different w/c ratios (ratios of weight of water to weight of cement) and crumb rubber content percentages were prepared, cast and tested using RH and UPV at different curing ages. Models were proposed and statistically validated to predict the relationship between compressive strength with UPV and rebound number (RN) for rubbercrete mixtures at 3, 7 and 28 days.  相似文献   

16.
A judicious use of resources, by using by-products and waste materials, and a lower environmental impact, by reducing carbon dioxide emission and virgin aggregate extraction, allow to approach sustainable building development. Recycled aggregate concrete (RAC) containing supplementary cementitious materials (SCM), if satisfactory concrete properties are achieved, can be an example of such sustainable construction materials.In this work concrete specimens were manufactured by completely replacing fine and coarse aggregates with recycled aggregates from a rubble recycling plant. Also RAC with fly ash (RA + FA) or silica fume (RA + SF) were studied.Concrete properties were evaluated by means of compressive strength and modulus of elasticity in the first experimental part. In the second experimental part, compressive and tensile splitting strength, dynamic modulus of elasticity, drying shrinkage, reinforcing bond strength, carbonation, chloride penetration were studied. Satisfactory concrete properties can be developed with recycled fine and coarse aggregates with proper selection and proportioning of the concrete materials.  相似文献   

17.
Permeability is one of the most important parameters to quantify the durability of high-performance concrete. Permeability is closely related with the spalling phenomenon in concrete at elevated temperature. This parameter is commonly measured on non-thermally damaged specimens. This paper presents the results of an experimental investigation carried out to study the effect of elevated temperature on the permeability of high-performance concrete. For this purpose, three types of concrete mixtures were prepared: (i) control high-performance concrete; (ii) high-performance concrete incorporating polypropylene fibres; and (iii) high-performance concrete made with lightweight aggregates. A heating–cooling cycle was applied on 160 × 320 mm, 110 × 220 mm, and 150 × 300 mm cylindrical specimens. The maximum test temperature was kept as either 200 or 600 °C. After the thermal treatment, 65 mm thick slices were cut from each cylinder and dried prior to being subjected to permeability test. Results of thermal gradients in the concrete specimens during the heating–cooling cycles, compressive strength, and splitting tensile strength of concrete mixtures are also presented here. A relationship between the thermal damage indicators and permeability is presented.  相似文献   

18.
A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (≈100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.  相似文献   

19.
The paper presented herein was carried out to investigate the permeability characteristics of self-compacting rubberized concretes with and without fly ash. At a water–cementitious material (w/cm) ratio of 0.35, the self-compacting concretes (SCCs) were produced by replacing the fine aggregate with four designated crump rubber contents of 0%, 5%, 15%, and 25% by fine aggregate volume. Moreover, the SCCs with fly ash were produced by partial substitution of cement with fly ash at varying amounts of 20% to 60%. Totally, 16 concrete mixtures were cast and tested for permeability related properties such as chloride ion permeability, water sorptivity, and water absorption. The tests were conducted at 28 and 90 days after casting. Tests results revealed that using the crumb rubber aggravated all of the measured properties of self-compacting rubberized concretes (SCRCs) without fly ash. However, with the combined use of the crump rubber and fly ash, the concretes had better resistance to the chloride ion permeability, water sorptivity, and water absorption.  相似文献   

20.
This paper presents the experimental results of recycled aggregate concrete (RAC) beams prepared with different amount of recycled coarse aggregate (RCA) subjected to low velocity impact. The recycled coarse aggregates are obtained from a demolished RCC culvert. Four concrete mixes with 0%, 25%, 50% and 100% RCA respectively are prepared. With each mix three beam specimens of size 1.15 × 0.1 × 0.15 m are prepared and tested under drop weight impact load. The behavior of the RAC beams are studied in terms of acceleration, strains and support reaction histories under impact load in addition to the physical and mechanical characteristics of RCA and RAC. It is observed that 25% RCA does not influence the strength of concrete. In addition, it is found that for a given impact energy (the energy imparted by the hammer per blow) the reactions and strains of RAC with 50% and 100% RCA are significantly lower and higher respectively than those of normal concrete and RAC with 25% RCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号