首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the mechanical properties and the durability parameters of lightweight aggregate concretes (LWAC) incorporating rigid polyurethane (PUR) foam waste as coarse aggregates (8/20 mm). The influence of both the increasing incorporation of PUR foam waste and the presence of superplasticizer on the workability, bulk density, mass loss, drying shrinkage, compressive strength, dynamic modulus of elasticity, total porosity, gas permeability and chloride diffusion coefficient of the different concretes, has been investigated and analyzed. The results showed that the use of PUR foam waste enabled to reduce by 29–36% the dry density of concrete compared to that of the normal weight concrete (made without foam waste). The reduction of density was due to the increase of total porosity in the lightweight concretes, which also induced higher gas permeability and chloride diffusion coefficient. These negative effects on durability of concrete were lowered by improving the characteristics of the cementitious matrix. The mechanical properties of the LWAC ranged between 8 and 16 MPa for the compressive strength and between 10 and 15 GPa for the dynamic modulus of elasticity; the concrete mixture with the higher performances almost satisfied the mechanical and density criteria of structural lightweight concrete. These results consolidate the idea of the use of PUR foam waste for the manufacture of lightweight aggregate concretes.  相似文献   

2.
The study presented herein provides a new insight into the effects of physical and chemical properties of the fly ash on the characteristics of the cold-bonded fly ash lightweight aggregates. LWAs were manufactured through the cold-bonding pelletization of two fly ashes differing in their physical and chemical properties. Moreover, one type of the LWAs was surface treated by water glass. The produced fly ash aggregates were then examined by means of ESEM micrograph, EDX spectrum, and XRD pattern to resolve the microstructural and the mineralogical characteristics of the LWAs. The findings of the study revealed that the fly ash with higher specific surface and with lower CaO content yielded higher strength LWAs. Furthermore, the surface treatment with water glass provided a marked increase in the aggregate strength and a reduction in the water absorption. The LWCs made with such LWAs had a compressive strength of as high as 60 MPa.  相似文献   

3.
钢纤维对高强轻骨料混凝土的增强效果研究   总被引:1,自引:0,他引:1  
伍勇华  杨俊芬  李国新  李智 《混凝土》2006,(6):42-44,48
本文采用粉煤灰陶粒和页岩陶粒两种轻骨料,配制成28d抗压强度分别为58.9MPa和64.6MPa的高强轻骨料混凝土.并采用弓形钢纤维增强这两种轻骨料混凝土,试验结果表明,随着钢纤维体积掺量的提高,这两种轻骨料混凝土的抗压、抗折及劈裂抗拉强度均有不同程度的提高,但以劈裂抗拉强度提高幅度最大.  相似文献   

4.
This research investigates the properties of fresh and hardened concretes containing locally available natural lightweight aggregates, and mineral admixtures. Test results indicated that replacing cement in the structural lightweight concrete developed, with 5–15% silica fume on weight basis, caused up to 57% and 14% increase in compressive strength and modulus of elasticity, respectively, compared to mixes without silica fume. But, adding up to 10% fly ash, as partial cement replacement by weight, to the same mixes, caused about 18% decrease in compressive strength, with no change in modulus of elasticity, compared to mixes without fly ash. Adding 10% or more of silica fume, and 5% or more fly ash to lightweight concrete mixes perform better, in terms of strength and stiffness, compared to individual mixes prepared using same contents of either silica fume or fly ash.  相似文献   

5.
用粘土陶粒作为粗骨料、膨胀珍珠岩作为细骨料和其他胶凝材料(水泥和粉煤灰)通过人工搅拌的方法配制轻骨料透水混凝土,研究不同的水泥、粉煤灰和细轻骨料用量对混凝土抗压强度、孔隙率、透水系数、pH值及表观密度等性能的影响。结果表明,随着水泥、粉煤灰和细轻骨料用量的增加,轻骨料透水混凝土的强度增加、表观密度增大,而孔隙率、透水系数会降低,pH值变化不大。  相似文献   

6.
The first part of this experimental program was to determine the structural bond properties of lightweight concrete incorporating solid waste oil palm shell (OPS) as coarse aggregate and also to compare its behaviour with other types of lightweight aggregate concretes. Other properties of OPS concrete namely the split tensile strength, modulus of rupture and modulus of elasticity were also determined. The structural bond properties were determined through pull-out test. The results showed that the experimental bond strength of OPS concrete was much higher than the design bond strength as stipulated by BS 8110. In general, the properties of OPS concrete compared well with that of other structural lightweight concretes and the results obtained encourage the use of OPS as aggregates for the production of structural lightweight concrete. The second part of the experimental program investigates the durability performance of OPS concrete through water permeability and water absorption tests.  相似文献   

7.
管斌君 《山西建筑》2014,(13):121-122
对水泥、粉煤灰等实验原材料进行了介绍,分析了减水剂、粘合剂和粉煤灰对多孔轻集料植被混凝土性能的影响,并通过试验得出掺加减水剂、粘合剂等可以配制碱度低、合适孔隙率及抗压强度2 MPa~3 MPa以上的多孔轻集料植被混凝土的结论。  相似文献   

8.
Reinforced lightweight aggregate high-strength concrete slabs that incorporated fly ash were exposed to 2% chloride solution for over 15 months. Chloride ion ingress, corrosion potentials, corrosion current density and electrical resistivity were determined. These slabs were compared with slabs from normal weight concrete of medium and high-strength. The results indicated that lightweight high-strength concrete slabs with fly ash in the concrete mixture showed the least amount of chloride concentration. Values of corrosion current density were very low and values of electrical resistivity were very high and indicative of extremely low corrosion current. The dense matrix of the lightweight high-strength concrete is believed to restrict continuous pores that may carry chloride ions. The effect of fly ash in lowering the chloride diffusivity further contributed to reduce harmful chloride ions. In addition, the porous sintered fly ash aggregates are believed to have acted as buffer reservoirs for the chloride laden solution and thus prevented the chloride ions from reaching the steel surface.  相似文献   

9.
设计了16组不同粉煤灰掺量的配合比,并对不同配合比试件的碳化性能和抗氯离子渗透性能进行了测试。试验结果表明,粉煤灰和矿粉的复掺能够提高高强轻集料混凝土的耐久性能。  相似文献   

10.
粉煤灰陶粒混凝土的耐久性分析   总被引:2,自引:0,他引:2  
采用扫描电镜分析研究了粉煤灰陶粒混凝土和普通混凝土的粗骨料与水泥石界面组成及结构;研究发现,轻骨料与水泥石界面致密,水泥及粉煤灰掺合料水化完全。从混凝土的微观结构入手,对粉煤灰陶粒混凝土的耐久性能做了分析,并通过抗碳化试验和抗弯曲疲劳试验对其耐久性能做进一步阐述。  相似文献   

11.
Lightweight aggregates have been manufactured by sintering fly ash and crushing the product into suitable sizes. These aggregates possess unique characteristics that make them suitable for high strength and high performance concrete. Concrete produced using these aggregates is around 22% lighter and at the same time 20% stronger than normal weight aggregate concrete. Drying shrinkage is around 33% less than that of normal weight concrete. Moreover, the aggregates possess high durability characteristics required in high performance structures. The importance of the new aggregates lies mostly in the fact that superior qualities are achieved without having to increase the cement content. Thus it is possible to reduce the amount of cement by as much as 20% without affecting the required strength. Weight reduction may reduce precast concrete transportation costs as well as provide slender and spacious construction. Utilising fly ash to produce quality aggregates should yield significant environmental benefits.  相似文献   

12.
基于掺加高钙粉煤灰的力学性能与抗渗性能试验,对外掺氧化镁膨胀剂普通混凝土的性能进行研究。分别加入10%、20%和30%的高钙粉煤灰,混凝土早期强度较低,后期强度增长较快,增长率大于未加掺合料的试体。加入高钙粉煤灰可大幅提升混凝土的密实度和孔隙结构,改进混凝土的抗渗性能。高钙粉煤灰的加入促进了轻集料最佳表面结构的形成,使结构更细密,是提高混凝土抗渗性的有效途径。  相似文献   

13.
钢纤维高强轻骨料混凝土的配比试验研究   总被引:1,自引:0,他引:1  
采用粉煤灰陶粒和页岩陶粒两种轻骨料,配制成28d抗压强度分别为58.9MPa和64.6MPa的高强轻骨料混凝土,并采用弓形钢纤维对这两种轻骨料混凝土增强试验。结果表明,随着钢纤维掺量的增加,这两种轻骨料混凝土的抗压、抗折及劈裂抗拉强度均有不同程度的提高,尤以劈裂抗拉强度的增幅最大。  相似文献   

14.
以陶粒为粗骨料制备了轻质混凝土试件,研究了耐碱玻纤、粉煤灰增强材料对轻质混凝土的力学性能及冻融耐久性的影响。结果表明,随着耐碱玻纤掺量的增加,同一龄期轻质混凝土试件的抗压强度、抗拉强度先增大后减小;过高的耐碱玻纤掺量不利于强度的增长,且耐碱玻纤对试件抗拉强度的影响大于抗压强度,其最优掺量为0.6 kg/m^3;掺入适量的粉煤灰(≤15%)能提高轻质混凝土的强度,提升幅度与掺量成正比,但掺量较大时对强度不利;与未掺耐碱玻纤的试件相比,当耐碱玻纤掺量低于0.6 kg/m^3和1.0 kg/m^3时,能分别提升试件的相对动弹性模量和降低质量损失率,改善幅度与耐碱玻纤的掺量正相关;粉煤灰掺量低于15%时有利于提高试件的冻融耐久性,但掺量较高(≥20%)则会降低试件的冻融耐久性指标。  相似文献   

15.
自密实轻骨料防水混凝土抗渗性能试验研究   总被引:1,自引:0,他引:1  
自密实轻骨料混凝土由于具有轻质高强、保温耐火、抗震性能好及便于施工等优点,作为隧道及地下工程的防水新手段,有其优越性。以某高速公路隧道防水工程为例,通过不同的抗渗性能测试手段,研究粉煤灰、聚丙烯纤维和UEA 复掺对自密实轻骨料防水混凝土(SCLC)抗渗性的影响,利用SEM、孔结构试验,探讨SCLC的抗渗机理。结果表明,粉煤灰、聚丙烯纤维和UEA复掺能显著提高SCLC的抗渗性及耐久性。  相似文献   

16.
This paper presents results of a study conducted to evaluate the mechanical properties and durability characteristics of ordinary Portland cement (OPC) and blended cement (silica fume and fly ash) concrete specimens prepared with electric arc furnace dust (EAFD). Concrete specimens were prepared with and without EAFD. In the silica fume cement concrete, silica fume constituted 8% of the total cementitious material while fly ash cement concrete contained 30% fly ash. EAFD was added as 2% replacement of cement in the OPC concrete and 2% replacement of the total cementitious content in the blended cement concretes. Mechanical properties, such as compressive strength, drying shrinkage, initial and final setting time, and slump retention were determined. The durability characteristics were evaluated by measuring water absorption, chloride permeability, and reinforcement corrosion. The initial and final setting time and slump retention increased due to the incorporation of EAFD in both OPC and blended cement concretes. The drying shrinkage of EAFD cement concrete specimens was more than that of concrete specimens without EAFD. The incorporation of EAFD was beneficial to OPC concrete in terms of strength gain while such a gain was not noted in the blended cement concretes. However, the strength differential between the blended cement concretes with EAFD and the corresponding concretes without EAFD was not that significant. The water absorption and chloride permeability, however, decreased due to the incorporation of EAFD in both the OPC and blended cement concretes. The corrosion resistance of OPC and blended cement concrete specimens increased due to the addition of EAFD.  相似文献   

17.
轻集料混凝土的抗硫酸盐侵蚀性能研究   总被引:1,自引:0,他引:1  
研究粉煤灰和硅灰对轻集料混凝土的抗硫酸盐侵蚀性能及内部孔结构的影响。结果表明,与普通混凝土相比,轻集料混凝土具有更优良的抗硫酸盐侵蚀性能;掺加粉煤灰或硅灰能优化混凝土的内部孔隙结构,大大提高轻集料混凝土的抗硫酸盐侵蚀性能;并探讨硫酸盐侵蚀溶液对轻集料混凝土的作用机理。  相似文献   

18.
为满足建筑结构对轻质构件的需求,进行正交配合比试验设计,研制LC35结构用陶粒轻骨料混凝土(LACC)。依据标准进行配合比计算,通过试制试验、多变量数据分析,得出影响LACC强度的影响因子水平,包括净水胶比、粉煤灰掺量、陶粒掺量和砂率。采用极差和方差分析,确定影响LACC 28d抗压强度因素的主次顺序为陶粒掺量>净水胶比>砂率>粉煤灰掺量,陶粒掺量480kg、净水胶比0.36、粉煤灰掺量20%、砂率42%为最优方案,且各因素不对28d抗压强度产生差异关系。最佳配合比净水胶比0.36、水泥360kg、粉煤灰90kg、陶粒480kg、砂775kg、减水剂4.5kg,LACC 28d抗压强度达到45MPa以上,满足轻骨料混凝土结构用强度要求。  相似文献   

19.
研究了铁尾矿砂、浮石、粉煤灰陶粒对轻骨料混凝土抗压强度、劈裂抗拉强度、弹性模量和干表观密度的影响,并利用Design-Expert软件对配合比进行了优化.结果 表明:随着粉煤灰陶粒相对掺量的增加,轻骨料混凝土的力学性能提高,干表观密度增大;随着浮石相对掺量的增加,轻骨料混凝土的力学性能降低,干表观密度减小;随着砂率的增...  相似文献   

20.
Mechanical properties of fly ash‐based geopolymer concretes at high temperature At present, concretes based on alkali‐activated binders, so‐called geopolymer concretes, are investigated intensively in the building materials industry and by the research community as environmentally friendly alternative to Portland cement‐based concretes. These inorganic binders, which are based on industrial by‐products such as fly ash and ground granulated blast furnace slag, exhibit high resistance against corrosive acids and salts, if properly designed. The mechanical properties of fly ash‐based geopolymer concretes at high temperatures are subject of systematic investigations at the Bundesanstalt für Materialforschung und ‐prüfung (BAM) to create a basis for the structural design of fire exposed concrete members based on alkali‐activated binders. The concrete specimens, produced with quartz aggregates or lightweight aggregates and heated to a maximum temperature of 750 °C, exhibited a decrease of compressive strength up to temperatures of ca. 300 °C, attributed to formation of microcracks caused by dehydration. At higher temperatures the compressive strength of the investigated geopolymer concretes recovered partly, due to sintering processes starting from ca. 500 °C. Because of this beneficial property when compared to conventional concretes, geopolymer concretes can potentially be applied in infrastructure facilities where fire resistance is critical. From the results of the thermomechanical tests stress‐strain relationships are derived that can be used for the structural design of members made from geopolymer concretes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号