首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cracking of cover concrete due to steel corrosion is one of the clear physical indicators of loss of service life of corroding RC structures. Its prediction is therefore very important for service life modelling of these structures. Models developed to predict the time to cover cracking assume that stresses due to steel corrosion follow the principles of a thick-walled cylinder under internal pressure. Considering the errors in the models, this paper contests the applicability of the thick-walled cylinder approach to model the time to cover cracking as well as the rate of lateral expansion of concrete after cover cracking using experimental results from 12 RC beams (153 × 254 × 3000 mm) corroded under a sustained load. It is shown in the paper that, contrary to the assumptions of uniform expansion made in the thick-walled cylinder approach, before cracking of the cover concrete, tensile strains are applied on the face of beams where corrosion agents are drawn whilst other faces are in compression. Corroded steel coupons are used to verify that this variation of strains is caused by the corrosion process not being uniformly distributed around the steel bar. It is also shown in the paper how cracking and location of cracks affects the rate of lateral deformation of concrete due to steel corrosion.  相似文献   

2.
This paper presents results of an investigation on the variation of mass loss of deformed tensile steel bars in RC beams (153 × 254 × 3000 mm) that were corroded whilst under a sustained load using an impressed current, constant wetting cycles with 5% NaCl solution and two different drying cycles. Following the corrosion test, selected beams were patch repaired whilst under a sustained load, but eventually all beams were tested to failure. The results indicated that the highest level of corrosion occurred where there were longer drying cycles, and that the level of sustained load had little effect on the rate of corrosion. Maximum mass loss of steel was found to occur at the centre of the corrosion region. The ultimate flexural capacity of beams was found to be best related to the maximum gravimetric mass loss compared to the average mass loss of steel. A maximum mass loss of steel of 1% was found to reduce the flexural capacity of beams by 0.7%.  相似文献   

3.
The experiments were performed for assessing the influence of cyclic thermal loading on the shear strength of reinforced concrete (RC) beam specimens. One hundred eleven RC beams of 100 × 150 × 1200 mm size reinforced in tension zone with two bars of 8, 10 and 12 mm diameters were tested under four point loading. The beams were subjected to a number of thermal cycles varying from 7 to 28 cycles with peak temperature taken as 100, 200 and 300 °C. The effects of thermal cycles on the crack pattern, failure mechanism, first crack load and the shear strength of beams have been discussed. The shear strength of the beams has been found to increase by up to 10% at lower temperature cycles of 100 and 200 °C but reduces by up to 14% at higher temperature (300 °C) depending on the severity of thermal loading. The results of study emphasize the need for developing appropriate guidelines for the design of RC structural elements used in comparatively high temperature environment with cyclic thermal loading conditions.  相似文献   

4.
The paper presents results of an investigation conducted to study the impact resistance of steel fibre reinforced concrete containing fibres of mixed aspect ratio. An experimental investigation was planned in which 108 plain concrete and SFRC beam specimens of size 100 × 100 × 500 mm were tested under impact loading. The specimen incorporated three different volume fractions i.e. 1.0%, 1.5% and 2.0% of corrugated steel fibres. Each volume fraction incorporated mixed steel fibres of size 0.6 × 2.0 × 25 mm and 0.6 × 2.0 × 50 mm in different proportions. The drop weight type impact tests were conducted on the test specimens and the number of blows of the hammer required to induce first visible crack and ultimate failure of the specimen were recorded. The results are presented in terms of number of blows required as well as impact energy at first crack and ultimate failure. It has been observed that concrete containing 100% long fibres at 2.0% volume fraction gave the best performance under impact loading.  相似文献   

5.
C20 and C30 classes of concrete are produced each with addition of Dramix RC-80/0.60-BN type of steel fibers (SFs) at dosages of 0, 30, 60 kg/m3, and their compressive strengths, split tensile strength, moduli of elasticity and toughnesses are measured. Nine reinforced concrete (RC) beams of 300 × 300 × 2000 mm outer dimensions, designed as tension failure and all having the same steel reinforcement, having SFs at dosages of 0, 30, 60 kg/m3 with C20 class concrete, and nine other RC beams of the same peculiarities with C30 class concrete again designed as tension failure and all having the same reinforcement are produced and tested under simple bending. The load versus mid-span deflection relationships of all these RC and steel-fiber-added RC (SFARC) beams under simple bending are recorded. First, the mechanical properties of C20 and C30 classes of concrete with no SFs and with SFs at dosages of 30 and 60 kg/m3 are determined in a comparative way. The flexural behaviours and toughnesses of RC and SFARC beams for C20 and C30 classes of concrete are also determined in a comparative way. The experimentally determined (mid-section load)–(SFs dosage) and (toughness)–(SFs dosage) relationships are given to reveal the quantitative effects of concrete class and SFs dosage on these crucial properties.  相似文献   

6.
This paper presents the results of an experimental study conducted to characterize the structural behaviour of reinforced concrete beams corroded whilst subjected to constant sustained service loads. Corrosion of tensile steel bars was induced by an accelerated corrosion process using a 5% solution of NaCl and a constant impressed current. Four RC beams were tested, each with a width of 153 mm, a depth of 254 mm and a length of 3000 mm. Beams were tested whilst under a load equivalent to 1%, 8% and 12% of the ultimate load. Longitudinal tensile and compressive strains were monitored during the corrosion process and used to determine the variation of the depth of the neutral axis, the curvature and the second moment of area of beams with the time of electrolysis. The results indicate that the longitudinal strains, the depth of the neutral axis and the curvature of beams depend on both the level of corrosion and the applied service load whilst the second moment of area is mostly influenced by the level of corrosion.  相似文献   

7.
This paper presents the results of the first phase of a study on the effect of the confinement provided by transverse carbon fiber reinforced polymer (CFRP) sheets on the fatigue bond strength of steel reinforcing bars in concrete beams. Reinforced concrete bond-beams 150 × 250 × 2000 mm were tested. The variables examined were the area of the CFRP sheets (none or one U-wrap CFRP sheet), the reinforcing bar diameter (20 or 25 mm) and the load range applied to the specimens. The results showed that increasing the bar diameter increased the fatigue bond strength for the unwrapped beams. The CFRP sheets increased the bond strength of the bond-beams with 20 mm bars. However, for the beams with 25 mm steel bars the failure mode changed from a bond splitting failure for the unwrapped beams to a diagonal shear failure for the CFRP wrapped beams, and there was little increase in fatigue strength. Finally, the bond failure mechanism for repeated loading is described.  相似文献   

8.
Corrosion phenomena and related effects, such as size reduction in both rebars and strands, bond decay at steel–concrete interface, and cracking in the surrounding concrete, are particularly critical in prestressed-concrete members, not only for safety reasons, but also for their huge potential socio-economic effects. As a matter of fact, this technique has been used for the last 50 years in the majority of viaducts and bridges built in many countries like Italy.In order to evaluate the influence of the corrosion on prestressed pretensioned beams, a number of tests has been carried out in the Laboratory of the University of Rome “Tor Vergata”.Nine prestressed beams (section size 200 × 300; total length 3000 mm; clear span 2700 mm) were first subjected to artificial corrosion, to obtain different damage levels, and then were tested in four-point bending.The results clearly show the sizable effects that corrosion has on the ultimate capacity (that is significantly reduced), on the failure mode and on the structural response, that turns from ductile to brittle.  相似文献   

9.
Steel fiber-added reinforced concrete (SFRC) applications have become widespread in areas such as higher upper layers, tunnel shells, concrete sewer pipes, and slabs of large industrial buildings. Usage of SFRC in load-carrying members of buildings having conventional reinforced concrete (RC) frames is also gaining popularity recently because of its positive contribution to both energy absorption capacity and concrete strength.This paper presents experimental and finite element analysis of three SFRC beams. For this purpose, three SFRC beams with 250 × 350 × 2000 mm dimensions are produced using a concrete class of C20 with 30 kg/m3 dosage of steel fibers and steel class S420 with shear stirrups. SFRC beams are subjected to bending by a four-point loading setup in certified beam-loading frame, exactly after having been moist-cured for 28 days. The tests are with control of loads. The beams are loaded until they are broken and the loadings are stopped when the tensile steel bars are broken into two pieces. Applied loads and mid-section deflections are carefully recorded at every 5 kN load increment from the beginning till the ultimate failure.One of the SFRC beams modeled by using nonlinear material properties adopted from experimental study is analyzed till the ultimate failure cracks by ANSYS. Eight-noded solid brick elements are used to model the concrete. Internal reinforcement is modeled by using 3D spar elements. A quarter of the full beam is taken into account in the modeling process.The results obtained from the finite element and experimental analyses are compared to each other. It is seen from the results that the finite element failure behavior indicates a good agreement with the experimental failure behavior.  相似文献   

10.
Cracks in concrete generally interconnect flow paths and increase the permeability of concrete. The increase of permeability due to gradual crack growth allows more water or aggressive chemical ions to penetrate the concrete and facilitate deterioration. This research aims to study water permeability and how it is affected by hydraulic pressure and crack widths in cracked concrete.Tests were carried out as a function of hydraulic pressure and crack width, using the splitting and reuniting method to manufacture concrete specimens with controlled crack widths. Crack widths were examined using a microscope. The results showed a considerable increase in water transport as crack width and hydraulic pressure increased. But when the crack width was smaller than 50 μm, it had little effect on concrete permeability. Due to autogenous healing, the water flow through such cracks was gradually reduced over time. However, when the crack width was between 50 and 100 μm and hydraulic pressure was greater than 0.025 MPa, concrete permeability increased rapidly.  相似文献   

11.
Glass fibre-reinforced polymer (GFRP) tubes are compared to steel spiral reinforcement in circular concrete members with longitudinal reinforcement and prestressing, using six beam tests. Two 324 mm diameter and 4.2 m long prestressed specimens were tested in bending. Four 219 mm diameter reinforced specimens were also tested, including two 2.43 m long beams tested in bending and two 0.6 m long beams tested in shear. In each set, one specimen was essentially a concrete-filled GFRP tube, while the other control specimen included steel spiral reinforcement of comparable hoop stiffness to that of GFRP tube. The strength of control specimens was governed by crushing and spalling of concrete cover. Unlike spiral reinforcement, GFRP tubes confined larger concrete areas and also contributed as longitudinal reinforcement, leading to increases in flexural and shear strengths, up to 113% and 69%, respectively.  相似文献   

12.
The in-plane shear behaviour of URM wallettes strengthened using near surface mounted high strength twisted stainless steel reinforcement (TSNSM) was investigated and in particular, the effectiveness of the reinforcing schemes to restrain the diagonal cracking failure mode was studied. A total of 17 URM wallettes, each being 1.2 m × 1.2 m in size, were structurally tested in induced diagonal compression. Of these, 3 wallettes were tested as-built and 14 wallettes were tested after being strengthened using different patterns of TSNSM bars. Several parameters pertaining to the in-plane shear behaviour of strengthened URM walls were investigated, including failure modes, shear strength, maximum drift, pseudo-ductility, and shear modulus. It was inferred from the results that as-built tested wallettes exhibited sudden post-peak strength degradation and failed along a stepped diagonal joint crack, whilst strengthened wallettes failed along distributed diagonal cracks in a more ductile fashion and exhibited a shear strength increment ranging from 114% to 189%.  相似文献   

13.
The effectiveness of strengthening reinforced concrete (RC) beams with prestressed near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods was investigated. Four RC beams (254 mm deep by 152 mm wide by 3500 mm long) were tested under monotonic loading. One beam was kept un-strengthened as a control beam. One beam was strengthened with a non-prestressed NSM CFRP rod. Two beams were strengthened with prestressed NSM CFRP rods stressed to 40% and 60% of the rod’s ultimate strength. The test results showed that strengthening with non-prestressed NSM CFRP rod enhanced the flexural response of the beam compared to that of the control beam. A remarkable improvement in the response was obtained when the RC beams were strengthened with prestressed (40% and 60%) NSM CFRP rods. An increase up to 90% in the yield load and a 79% in the ultimate load compared to those of the control beam were obtained. An analytical model was developed using sectional analysis method to predict the flexural response of RC beams strengthened with prestressed NSM CFRP rods. The proposed model showed excellent agreement with the experimental results.  相似文献   

14.
Corrosion of steel bars embedded in concrete having compressive strengths of 20, 30 and 46 MPa was investigated. Reinforced concrete specimens were immersed in a 3% NaCl solution by weight for 1, 7 and 15 days. In order to accelerate the chemical reactions, an external current of 0.4 A was applied using portable power supply. Corrosion rate was measured by retrieving electrochemical information of polarization technique. Pull-out tests of reinforced concrete specimens were then conducted to assess the corroded steel/concrete bond characteristics.Experimental results showed that corrosion rate of steel bars and bond strength between corroded steel/concrete were dependent on concrete strength and accelerated corrosion period. As concrete strength increased from 20 to 46 MPa, corrosion rate of embedded steel decreased. First day of corrosion acceleration caused a slight increase in steel/concrete bond strength, whereas sever corrosion after 7 and 15 days of corrosion acceleration significantly reduced steel/concrete bond strength. Visual and metallographic observation of steel bars removed from concrete samples after testing revealed that the severity of corrosion reactions and reduction of steel bar diameter increased as the corrosion acceleration period increased. Presence of localized corrosion pits as well as severe corrosion grooves of steel bars was confirmed after 7 and 15 days of corrosion acceleration, respectively.  相似文献   

15.
Three-edge-bearing and crack size measurement tests were carried out on plain concrete, reinforced-concrete, and steel-fibre concrete pipes of 500 mm diameters. The average three-edge-bearing strength and crack size of steel-fibre concrete pipes having steel fibres of RC80/60-BN type at a dosage of 25 kg/m3 turned out to be 82% greater and 47% smaller than those of plain concrete pipes, and 6% greater and 15% smaller than those of reinforced-concrete pipes, respectively. Tests on those steel-fibre concrete pipes having a steel fibres dosage of 40 kg/m3 revealed that a steel fibres dosage of 25 kg/m3 seems to be close to optimum because a 60% increase in the amount of steel fibres engenders only minor improvements. By these findings, steel-fibre concrete pipes are more economical than and mechanically and physically superior to reinforced-concrete pipes.  相似文献   

16.
The benefits of adding fibres to concrete, evidenced in the post-cracking behaviour, are strongly influenced not only by the type and content of fibres but also by their orientation. The objective of this study is to evaluate the influence of the casting/placing procedure on the post-peak behaviour of fibre reinforced self-compacting concrete, and its relationship with the mesostructural characteristics of the material (type, distribution and orientation of fibres). Three concretes were prepared using two types of steel fibres of different lengths (50 mm and 30 mm) and a structural type polymer fibre. Beams of 150 × 150 × 600 mm were cast in three different ways: filling the moulds from the centre in accordance with the EN 14651 Standard, pouring concrete from one end of the mould after a flowing along a 5 m length and 150 mm diameter pipe, and finally, filling the moulds vertically. Flexural tests according to the European Standard indicate that the three types of fibres achieve a preferential orientation along horizontal planes, like in conventional vibrated fibre reinforced concrete. The mechanical response of beams cast with longer steel fibres was strongly affected by the casting procedure while the flexural performance of the other two fibre concretes, was less affected. Such results are well in accordance with the density of fibres measured by fibre counting in different cut planes.  相似文献   

17.
Group studs are known as shear connectors in steel and concrete composite structures. By now, many composite bridges have been characterized by long lateral cantilevers. The shear studs are actually under biaxial action consisting of shear force and action in light of lateral bending moment on concrete slab induced by long cantilever and passing by moving loads. Moreover, lateral bending moment may even lead to the initiation of bending-induced concrete cracks. These two situations can both affect mechanical performance of group studs. Thus, a parametrical FEM analysis was carried out, in which damage plasticity was introduced to simulate material nonlinear behavior. In the analysis, lateral bending moments respectively inducing maximum concrete crack widths of 0.1 mm and 0.2 mm, shank diameters of 13 mm, 16 mm, 19 mm and 22 mm and stud heights including 80 mm and 100 mm were parameters. It was found that mechanical behavior of group studs with large shank diameter would be less affected by biaxial action and initial bending-induced concrete cracks seemed unfavorable to stud shear stiffness. On the other hand, typical push-out tests were executed to investigate reductions of shear stiffness and shear capacity of group studs. The reliability of FEM analysis was also verified based on the tests. In addition, stud shear capacity evaluations according to several design specifications were presented. It indicated shear capacity evaluation of Eurocode 4 got a relatively large safety factor. Moreover, the applicability of these specifications for group studs on shear capacity evaluation was also discussed.  相似文献   

18.
The strengthening of reinforced concrete structures with externally bonded fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. The numerous studies that have been carried out to date on FRP-strengthened concrete elements have mainly focussed on the static and short-term responses; very little work has been done regarding the long-term performance. This paper addresses this issue, and presents results from a series of experiments on the time-dependent behaviour of carbon FRP-strengthened concrete beams. Twenty-six reinforced concrete beams with dimensions 100 × 150 × 1800 mm, with and without bonded CFRP laminates, were investigated for their creep behaviour. Different reinforcement ratios were used to evaluate the contribution of the external reinforcement on the creep resistance of the beams. High levels of sustained load were used in order to determine the maximum sustained load that can be applied without any risk of creep failure. The applied sustained loads varied from 59% to 78% of the ultimate static capacities of the un-strengthened beams. For most of the long-term tests, the applied sustained loads were higher than the service loads. This was done to account for the fact that strengthening is typically required when a structure is expected to carry increased service loads. The main parameters of this study were (i) the level of sustained load and (ii) the strengthening scheme. The results confirm that FRP strengthening is effective for increasing the ultimate capacities of the beams; however, there is virtually no improvement in performance with regard to the long-term deflections.  相似文献   

19.
Experimental tests conducted on 27 square cementitious slabs of 490 × 490 mm simply supported on four edges and subjected to patch load are presented. The slabs had a clear span of 400 × 400 mm and provided with a 445 × 445 mm closed frame of 8 mm diameter steel bar to hold the reinforcement in place and to act as a line support. The test variables were the wire mesh volume fraction: four expanded and two square types; slab thickness: 40, 45, 50 and 60 mm; and the patch load pattern: square and rectangular. The test results showed that as the volume fraction increased the punching strength of the slabs was also increased. Adding a wire mesh to ordinary reinforcement increases significantly the punching resistance at column stub. Moreover, as the loaded area size increases both ductility and stiffness increases and the bridging effect due to the difference in the reinforcement ratio in orthogonal directions was clearly noticed. More research was needed to identify the volume fraction ratio at which the mode of failure alter from flexure to punching.  相似文献   

20.
Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of a concrete bridge in an urban area was evaluated by measuring the carbonation rate and concrete cover depth in three different parts: the sound, cracked and construction joint parts of cover concrete. The average carbonation rate was ordered by the sound > joint > cracked parts, and the concrete cover depth measured by an ultrasonic detector indicated the slightly greater value than the designed one (50.0 mm). Then, the carbonation-free service life at the depth of the steel was calculated, based on in situ information, by the safety factor method and the Monte Carlo simulation. The service life calculated by the two methods was mostly identical. The sensitivity of the carbonation rate and concrete cover depth to the time to carbonation at the depth of the steel was mathematically determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号