首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanothione reductase is a vital component of the antioxidant defenses of trypanosomes. This enzyme reduces trypanothione, a spermidine-glutathione conjugate. The inhibitory effects of several spermidine derivatives on the reduction of trypanothione by Trypanosoma cruzi trypanothione reductase were assessed. Spermidine derivatives containing hydrophobic aromatic substituents were found to be competitive inhibitors of trypanothione reductase. N4-acylated spermidine derivatives were less effective inhibitors than the corresponding N4-alkylated derivatives. The most effective compounds studied were N1, N8-bis(2-naphthylmethyl)spermidine and N4-(2-naphthylmethyl)spermidine, with Ki values of 9.5 and 108 microM, respectively.  相似文献   

2.
Several spermine and spermidine derivatives containing 2-amino diphenylsulfide substituents were prepared and tested for their inhibiting effects on Trypanosoma cruzi trypanothione reductase. IC50 values were assessed between 0.3 and 3 microM. Compound 32 (Ki = 0.4 microM) is the most potent TR inhibitor described so far.  相似文献   

3.
Leishmania resistant to arsenicals and antimonials extrude arsenite. Previous results of arsenite uptake into plasma membrane-enriched vesicles suggested that the transported species is a thiol adduct of arsenite. In this paper, we demonstrate that promastigotes of arsenite-resistant Leishmania tarentolae have increased levels of intracellular thiols. High-pressure liquid chromatography of the total thiols showed that a single peak of material was elevated almost 40-fold. The major species in this peak was identified by matrix-assisted laser desorption/ionization mass spectrometry as N1,N8-bis-(glutathionyl)spermidine (trypanothione). The trypanothione adduct of arsenite was effectively transported by the As-thiol pump. No difference in pump activity was observed in wild type and mutants. A model for drug resistance is proposed in which Sb(V)/As(V)-containing compounds, including the antileishmanial drug Pentostam, are reduced intracellularly to Sb(III)/As(III), conjugated to trypanothione, and extruded by the As-thiol pump. The rate-limiting step in resistance is proposed to be formation of the metalloid-thiol pump substrates, so that increased synthesis of trypanothione produces resistance. Increased synthesis of the substrate rather than an increase in the number of pump molecules is a novel mechanism for drug resistance.  相似文献   

4.
In order to establish structural elements responsible for inhibition of trypanothione reductase (TR) from Trypanosoma cruzi by 2-aminodiphenylsulfides, a series of dissymmetrical derivatives, corresponding to the replacement of one aromatic moiety by different amines, was synthesized. TR inhibition studies revealed the importance of the aromatic rings and of the amino groups in the side chains for potent inhibition. Quinonic moities were also introduced with the aim of acting as TR redox-cycling substrates.  相似文献   

5.
A knockout strain of Leishmania donovani lacking both ornithine decarboxylase (ODC) alleles has been created by targeted gene replacement. Growth of Deltaodc cells in polyamine-deficient medium resulted in a rapid and profound depletion of cellular putrescine pools, although levels of spermidine were relatively unaffected. Concentrations of trypanothione, a spermidine conjugate, were also reduced, whereas glutathione concentrations were augmented. The Deltaodc L. donovani exhibited an auxotrophy for polyamines that could be circumvented by the addition of the naturally occurring polyamines, putrescine or spermidine, to the culture medium. Whereas putrescine supplementation restored intracellular pools of both putrescine and spermidine, exogenous spermidine was not converted back to putrescine, indicating that spermidine alone is sufficient to meet the polyamine requirement, and that L. donovani does not express the enzymatic machinery for polyamine degradation. The lack of a polyamine catabolic pathway in intact parasites was confirmed radiometrically. In addition, the Deltaodc strain could grow in medium supplemented with either 1,3-diaminopropane or 1, 5-diaminopentane (cadaverine), but polyamine auxotrophy could not be overcome by other aliphatic diamines or spermine. These data establish genetically that ODC is an essential gene in L. donovani, define the polyamine requirements of the parasite, and reveal the absence of a polyamine-degradative pathway.  相似文献   

6.
Two acetyl analogues of spermidine and five analogues of spermine were used to determine the structural specificity of the polyamine transport system in Escherichia coli by measuring their ability to compete with [14C]putrescine or [14C]spermine for uptake, as well as to inhibit cell growth, and, finally, to affect the intracellular polyamine pools. Spermine uptake follows simple Michaelis-Menten kinetics (Kt = 24.58 +/- 2.24 microM). In contrast, the putrescine uptake system involves two saturable Michaelis-Menten carriers exhibiting different affinity towards putrescine (Kt = 3.63 +/- 0.43 microM, Kt' = 0.61 +/- 0.10 microM). From the Ki values, it is inferred that N1-5-amino-2-nitrobenzoylspermine is the most effective competitive inhibitor followed by N1-acetylspermine, and then N1,N12-diacetylspermine. N1-acetylspermidine and N8-acetylspermidine also inhibit competitively the uptake of spermine, the latter being the most effective inhibitor. In addition, the above-mentioned analogues inhibit identically one of the carriers of putrescine uptake, suggesting the existence of a common transporter for both putrescine and spermine. The order of analogue potency, regarding the other carrier of putrescine is as follows: N1,N12-diacetylspermine approximately N1-5-amino-2-nitro-benzoylspermine > N1-acetylspermine. Both N1-acetylspermidine (Ki = 753 +/- 25 microM, Ki' = 128 +/- 5 microM) and N8-acetylspermidine (Ki = 22.4 +/- 0.4 microM, Ki' = 279 +/- 3 microM) also cause competitive inhibition of putrescine uptake, however with inverse affinity towards the putrescine carriers. Neither N4,N9-diacetylspermine, nor N1,N4-bis(beta-alanyl)diaminobutane affect the uptake of any polyamine. Interestingly, none of the acetyl analogues of spermine has a measurable effect on cell growth and cellular polyamine pools, although some of them are accumulated in cells. Based on these findings, the relative significance of the primary and secondary amines and of the chain flexibility as determinants of cellular uptake are discussed.  相似文献   

7.
The nitrous oxide (N2O) reductase (nos) gene cluster from Achromobacter cycloclastes has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ (structural N2O reductase gene), nosD, nosF, nosY, nosL, and nosX are detected, indicating a genetic organization similar to that of Rhizobium meliloti. To aid homology studies, nosR from R. meliloti has also been sequenced. Comparison of the deduced amino acid sequences with corresponding sequences from other organisms has also allowed structural and functional inferences to be made. The heterologous expression of NosD, NosZ (N2O reductase), and NosL is also reported. A model of the CuA site in N2O reductase, based on the crystal structure of this site in bovine heart cytochrome c oxidase, is presented. The model suggests that a His residue of the CuA domain may be a ligand to the catalytic CuZ site. In addition, the origin of the spectroscopically-observed Cys coordination to CuZ is discussed in terms of the sequence alignment of seven N2O reductases.  相似文献   

8.
9.
Leishmania spp. encounter damaging oxygen metabolites from endogenous metabolic processes as well as from exogenous sources, such as inside the gut of the sandfly vector and within host macrophages. The recently described peroxidoxin protein family form part of a novel pathway for metabolising hydrogen peroxide that, in trypanosomatids, links peroxide reduction to NADPH oxidation via trypanothione. Here we report the cloning and characterisation of the Leishmania major peroxidoxin gene, tryparedoxin peroxidase (TryP). TryP is a multi-copy gene arranged in a complex tandem array located on the size polymorphic homologues of chromosome 15. Northern analysis showed that TryP expresses a single 1.6 kb mRNA throughout promastigote development. TryP encodes a 22-kDa protein with two conserved cysteine-containing domains that defines it as a 2-Cys peroxidoxin. Purified recombinant TryP protein catabolised hydrogen peroxide in the presence of the tryparedoxin homologue from Crithidia fasciculata (Cf-TryX), trypanothione, trypanothione reductase and NADPH. The demonstration that L. major utilises a three-protein peroxidase system confirms that this is a mechanism of protection against oxidative damage in this parasite.  相似文献   

10.
Dihydrolipoamide dehydrogenase (E3) is a flavoprotein component of multi-enzyme complexes catalyzing oxidative decarboxylation of alpha-ketoacids in the Krebs' cycle. We have cloned a 2.4-kb E3 cDNA from an arthropod, Manduca sexta, that codes for 497 amino acids and translates to a 51-kDa protein in vitro. Sequences at and around the dinucleotide binding domains, disulfide active site and the C-terminal interface domain involved in substrate binding are highly conserved in Manduca E3. Phylogenetic analysis of protein sequences from the flavoprotein class of disulfide oxidoreductases family of enzymes suggests that in spite of the homologous nature of E3 and glutathione reductase (goR) in sequence and structure, E3 shares a common ancestor with mercuric reductase (merA), whereas goR is more related to trypanothione reductase (tryR) than to other members. All members, except goRs, seemed to be monophyletic. Plant goRs seemed to have arisen differently and are more closely related to tryRs than to bacterial and vertebrate goRs. Earlier speculation on the nature of origin of E3 in Pseudomonas is not supported by phylogenetic data. A possible structural relationship of Manduca E3 to other pyridine-binding proteins, such as the neurotransmitter transporters and channels, is proposed.  相似文献   

11.
A recently generated transgenic mouse line having activated polyamine catabolism due to systemic overexpression of spermidine/spermine N1-acetyltransferase (SSAT) was used to isolate primary fetal fibroblasts as a means to further elucidate the cellular consequences of activated polyamine catabolism. Basal levels of SSAT activity and steady-state mRNA in the transgenic fibroblasts were about approximately 20- and approximately 40-fold higher than in non-transgenic fibroblasts. Consistent with activated polyamine catabolism, there was an overaccumulation of putrescine and N1-acetylspermidine and a decrease in spermidine and spermine pools. Treatment with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) increased SSAT activity in the transgenic fibroblasts approximately 380-fold, whereas mRNA increased only approximately 3-fold, indicating post-mRNA regulation. SSAT activity in the nontransgenic fibroblasts increased approximately 200-fold. By Western blot, enzyme protein was found to increase approximately 46 times higher in the treated transgenic fibroblasts than non-transgenic fibroblasts: a value comparable to 36-fold differential in enzyme activity. With DENSPM treatment, spermidine pools were more rapidly depleted in the transgenic fibroblasts than in nontransgenic fibroblasts. Similarly, transgenic fibroblasts were much more sensitive to DENSPM-induced growth inhibition. This was not diminished by co-treatment with an inhibitor of polyamine oxidase, suggesting that growth inhibition was due to polyamine depletion per se as opposed to oxidative stress. Since the two fibroblasts were genetically identical except for the transgene, the various metabolic and growth response differences are directly attributable to overexpression of SSAT.  相似文献   

12.
13.
The naturally occurring polyamines putrescine, spermidine, and spermine are required for cell growth. Based on this requirement, several polyamine analogues that interfere with polyamine function and metabolism have been synthesized as antineoplastic agents. The symmetrically substituted N1,N12-bis(ethyl)spermine (BESpm), and unsymmetrically substituted N1-ethyl-N11-[(cyclopropyl)methyl]-4, 8-diazaundecane (CPENSpm) have previously been shown to cause rapid cytotoxicity of NCI H157 cells, with concurrent high induction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase. However, the precise mechanism(s) of the cytotoxic action of the compounds is not known. We now demonstrate that treatment with either BESpm or CPENSpm results in morphological and biochemical changes consistent with the activation of programmed cell death pathways, and that the unsymmetrically substituted CPENSpm more rapidly activates the death program. These studies suggest that the cell type-specific cytotoxicity of these polyamine analogues may be a result of their ability to selectively activate the cell death pathway in sensitive phenotypes and indicate that the relationship between the structure of the polyamine analogues and the ability to induce programmed cell death should be investigated.  相似文献   

14.
Certain N-alkylated analogues of the natural polyamine spermine have been found to disrupt polyamine pool homeostasis and inhibit tumor cell growth. The most effective of these analogues, N1, N11-diethylnorspermine (DENSPM), apparently depletes intracellular polyamine pools primarily by inducing the polyamine acetylating enzyme spermidine/spermine N1-acetyltransferase, which contributes to polyamine depletion via increased polyamine excretion and catabolism. In this report, the experimental therapeutic efficacy of DENSPM was further examined with the use of other human solid tumor xenografts, including A121 ovarian carcinoma, A549 lung adenocarcinoma, HT29 colon carcinoma, and SH-1 melanoma, and compared with previously obtained findings with MALME-3M and PANUT-3 human melanomas. In vitro studies indicated that the growth sensitivity of most tumor cell lines to DENSPM was similar, with characteristically flat dose-response curves and IC50s ranging between 0.1 and 1 micrometer the only exception was the HT29 colon carcinoma cell line, which had an IC50 of >100 micrometer. For in vivo studies, DENSPM was administered by i.p. injection to female nude athymic mice at 40 and/or 80 mg/kg 3 times a day (every 8 h) for 6 days or by continuous s.c. infusion with the use of Alzet pumps at 120, 240, or 360 mg/kg/day for 4 days. Treatment began after s.c. tumor xenografts had reached 100-200 mm3. The SH-1 melanoma, A549 lung adenocarcinoma, and A121 ovarian carcinoma xenografts responded well to the i.p. administration of analogue with obvious tumor regressions, long-term tumor growth suppressions, and a significant proportion (up to 40%) of apparent cures (i.e., lack of tumor regrowth). However, in similarity to in vitro findings, HT29 colon carcinoma xenografts responded poorly to DENSPM treatment. Massive induction of N1-acetyltransferase activity and extensive depletion of polyamine pools were consistent findings in most tumor types after in vivo or in vitro treatment with DENSPM. The rapidly growing human LOX melanoma xenograft, however, demonstrated poor induction of N1-acetyltransferase activity and the poorest response to DENSPM treatment. In nude athymic mice with MALME-3M melanoma xenografts, constant infusion delivery of DENSPM resulted in prolonged inhibition of tumor growth and long-term tumor regressions comparable to those produced by multiple i.p. injections. On the basis of the unique structure of DENSPM, novel target and mode of intervention, mild host toxicity, and activity against different human solid tumor xenografts, DENSPM is currently being developed as an antitumor agent in humans.  相似文献   

15.
Previous studies have documented differential sensitivity of human lung cancer and melanoma cell lines to the cytotoxic effects of N1, N12-bis(ethyl)spermine (BESpm). We show here that BESpm can significantly inhibit the growth of six human breast cancer cell lines with 50% inhibitory concentration in the microM range. The degree of inhibition does not correlate with estrogen receptor status. Detailed studies with estrogen receptor-positive MCF-7 and estrogen receptor- negative Hs578t cells show a similar dose-response curve with concentrations of 1-10 microM resulting in maximal growth inhibition. Growth inhibition in both lines is associated with an 8-12-fold induction of the polyamine catabolic enzyme, spermidine/spermine N1-acetyltransferase, and a progressive decrease in intracellular polyamine levels over 6 days even though steady-state levels of BESpm are achieved within 24 h. Similar studies on WTMCF7 and AdrRMCF7 cells show that the acquisition of resistance to hormonal or doxorubicin therapy is not associated with resistance to the growth-inhibitory effects of BESpm. These results suggest that BESpm exerts similar growth-inhibitory effects against both hormone-responsive and -unresponsive human breast cancer cells, a finding which has significance for the potential use of polyamine analogues in treating human breast cancer.  相似文献   

16.
Tryparedoxin has recently been discovered as a constituent of the trypanosomal peroxidase system catalysing the reduction of a peroxiredoxin-type peroxidase by trypanothione [Nogoceke et al. (1997) Biol. Chem. 378, 827-836] and has attracted interest as a potential molecular target for the development of trypanocidal agents. Here we describe the first isolation of a novel gene from Crithidia fasciculata encoding a different tryparedoxin designated tryparedoxin II. The deduced amino acid sequence of tryparedoxin II (accession number AF055986) differs substantially from the partial sequence reported for the tryparedoxin described previously and now renamed tryparedoxin I. It shares the sequence motif Vx3FSAxWCPPCR shown to represent the catalytic site in tryparedoxin I [Gommel et al. (1997) Eur. J. Biochem. 248, 913-918] with mouse nucleoredoxin (accession number X92750), and a thioredoxin-like gene product of Caenorhabditis elegans (accession number U23511). Depending on which ATG is considered functional as translation start codon, tryparedoxin II, with 150 or 165 amino acid residues, is 50% larger than the typical thioredoxins. The tryparedoxins appear phylogenetically related to the thioredoxins, but sequence similarities are restricted to the active site motifs and their intimate neighbourhood. His-tagged tryparedoxin II expressed in E. coli exhibited ping-pong kinetics in the trypanothione:peroxiredoxin assay with kinetic parameters (KM peroxiredoxin = 4.2 microM, KM trypanothione = 33 microM, Vmax/[E] = 952 min(-1)) similar to those reported for tryparedoxin I [Gommel et al. (1997) Eur. J. Biochem. 248, 913-918]. The co-existence of two distinct tryparedoxins in C. fasciculata suggests diversified biological roles of this novel type of protein, which in trypanosomatids may substitute for the pleiotropic redox catalyst thioredoxin.  相似文献   

17.
A trans-dominant mutational strategy was used to down-regulate trypanothione reductase (TR) activity levels in Leishmania donovani, the causative agent of visceral leishmaniasis in humans. TR, regarded as an ideal drug target against trypanosomatid infections, is a homodimeric flavoprotein oxidoreductase unique to these organisms that plays a central role in the enzymatic regeneration of the thiol pool. Extrachromosomal, heterologous expression of a trans-dominant mutant version of the Trypanosoma cruzi enzyme in L. donovani resulted in the formation of inactive cross-species heterodimers and in a dramatic decrease of endogenous TR activity levels. Recombinant cells depleted of up to 85% of TR activity were significantly impaired in their ability to regenerate dihydrotrypanothione from trypanothione disulfide following oxidation with diamide. Nonetheless trans-dominant mutant recombinants were still capable of maintaining a reduced intracellular environment during cell growth in culture and were able to metabolize hydrogen peroxide at wild-type rates in vitro. Importantly, however, cells expressing the trans-dominant mutant enzyme displayed a decreased ability to survive inside activated macrophages in a murine model of Leishmania infection. The apparent inability of Leishmania to modulate the expression of active TR homodimers in response to the expression of trans-dominant mutant protein suggests that specific inhibitors of this enzyme should be useful anti-leishmanial agents.  相似文献   

18.
Eight analogues of 1N,12N-bisethylspermine (BES) with restricted conformations were synthesized in the search for new spermine mimetics with cytotoxic activities. By replacing the central butane segment of BES with a 1,2-disubstituted cyclopropane ring, a pair of cis/trans-isomers was obtained that introduced a spatial constraint in the otherwise freely mobile butane chain. An analogous pair of isomers was obtained when the butane segment was replaced with a 1, 2-disubstituted cyclobutane ring or with a 2-butene residue. The six new BES analogues thus obtained (three pairs of cis/trans-isomers) were growth inhibitory at low-micromolar concentrations against four human tumor cell lines (A549, HT-29, U251MG, and DU145) but were less growth inhibitory against two other human tumor cell lines (PC-3 and MCF7). 1N,12N-Bisethylspermyne, where the central butane segment of BES was replaced by the rigid 2-butyne segment, was devoid of growth inhibitory activity against five of the six human cell lines studied (DU145 being the only exception), a clear indication of the importance of conformational mobility at the 4N, 9N-butane segment of BES for its biological activity. When the butane segment was replaced by a benzene-1,2-dimethyl residue, the resulting BES analogue was devoid of growth inhibitory activity despite its cisoid conformation. The cytotoxicity of the analogues does not seem to be directly related to their uptake by the cells or to their effects on cellular polyamine levels. BES analogues with restricted conformations but which contained the equivalent of a two-carbon unit, rather than the natural four-carbon unit, at the central segment, such as 1,2-diaminocyclopropyl or 1, 2-diaminocyclobutyl derivatives, were devoid of growth inhibitory effects at the concentrations studied. The development of conformationally restricted polyamine analogues appears to show promise in the further quest for polyamine-related therapeutic agents with specificity of action.  相似文献   

19.
20.
Reports regarding the effect of all-trans-retinoic acid (RA) on the cell growth of retinal pigment epithelial cells (RPE) have been contradictory. The aims of this study are to clarify the in vitro effect of RA on RPE cells and to examine polyamine metabolism after RA stimulation. A 4-day incubation of fetal-calf-serum (FCS)-stimulated RPE cells with 10 or 25 microM RA significantly increased both cell number and [3H]thymidine incorporation. RPE cells grown over an extended period for 8 days also increased in number and reached full confluency. However, if the incubation was further extended to 12 days, no further increase in cell number was detected. RA treatment of FCS-stimulated RPE cells shifted the peak of ornithine decarboxylase (ODC) activity from 16 to 4 h. S-adenosylmethionine decarboxylase (SAMDC) activity and spermidine/spermine N1-acetyltransferase (SAT) activity of RA-treated RPE cells were significantly greater until 8 and 16 h after incubation, respectively. The putrescine content was significantly increased in RA-treated RPE cells up until 24 h, while spermidine, spermine and N1-acetylspermidine contents were significantly increased until 16 h. Our findings suggest that RA treatment increases the intracellular polyamine concentration of RPE cells via activation of ODC, SAMDC and SAT and that this results in the promotion of RPE cell growth until the cells reach full confluency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号