共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
《计算机应用与软件》2016,(5)
随着微博的爆炸式发展,微博已成为消息扩散和舆论传播的重要平台。研究微博信息的传播对市场营销、舆情管控等方面都具有重要意义。根据微博信息传播特点,结合传染病动力学原理,提出基于经典SIR(Susceptible-Infectious-Recovered)传染病模型的微博信息传播预测模型。该模型考虑了微博用户转发行为对信息传播机理的影响,构建具有微博传播特性的演化方程组。实验结果表明,该模型比SISe模型的预测误差更小,可以更准确地拟合和预测微博信息的转发数,从而预测得出微博信息的传播趋势。 相似文献
4.
5.
6.
张大瀚顾益军刘岩 《网络安全技术与应用》2016,(9):90-92
随着互联网技术的飞速发展,在线社交网络已与每个人的生活密不可分。当发生重大事件时,许多在线社会网络用户会在社交平台上发表与该事件相关的信息,然而社会网络关系错综复杂,信息量如洪水猛兽般,给舆情管控工作带来重大困难。本文将关注点聚焦到微博中自然灾害类事件,通过统计分析的方法挖掘潜藏在事件表面下的信息传播规律,为舆情管控提供合理有效的建议。 相似文献
7.
【目的】对现有微博热度预测研究展开多角度调研,讨论现有研究不足,展望未来发展趋势,为后续研究提供参考。【文献范围】本文整理和总结了近5年的国内外相关文献。【方法】本文首先介绍了热度预测问题的定义与热度计算方式,然后将热度预测研究方法从特征、时序和用户行为三个方面深入分析,再对热度预测问题的关键技术展开广泛调研,最后针对存在问题进行总结和展望。【结果】基于特征的热度预测方法因其定制性强被广泛使用,与深度学习和集成学习算法技术结合更是研究主流。【局限】由于各研究数据集未公开,本研究无法用统一的标准对所有算法技术的提升水平做横向对比。【结论】微博热度预测问题对于舆论监控、商业营销和内容推广等都具有一定意义,在社交媒体持续流行的时代,热度预测研究将会被继续深入推进。 相似文献
8.
微博流行度预测是根据微博早期的传播特征来预测其未来的传播范围.目前的主要方法是根据信息早期传播的流行度进行预测,忽略了传播速度变化的趋势,这导致此类方法在预测微博消息未来流行度时准确性较差.为了更准确和方便地预测微博未来流行度,提出了一个多元线性回归模型:用户活跃度及传播加速度(user activity propagation acceleration, UAPA)模型.首先,研究了未来流行度与早期传播趋势变化的联系,发现两者存在正相关关系,根据这个发现,提出了传播加速度的概念,并基于传播加速度和早期流行度建立了预测模型.然后,分析了微博用户周期性的活动现象并发现用户转发数量在一天的不同时刻差异很大,传播加速度和流行度也不同.基于这种情况,根据用户活跃性优化了预测模型.最后在2个真实数据集(分别有100万和41万条微博)上对比了UAPA模型与业内代表性流行度预测方法的预测准确度,分析了模型中参数取值对于预测效果的影响.实验表明:提出的UAPA模型在多个性能指标上都优于现有方法. 相似文献
9.
10.
随着微博的迅速兴起和其影响力的不断提高,提取微博信息传播特征和构建传播模型已成为了研究热点。针对用户转发行为,首先分析了信息传播机制;然后从影响用户转发行为的发布用户、接收用户、用户亲密度和信息时效性4个方面提取出8个特征因素进行建模;在借鉴传染病动力学SIR模型的基础上,引入用户行为分析和接触节点,提出基于用户行为分析的SCIR模型,并给出动力学方程;最后利用新浪微博真实转发数据验证模型的合理性。实验结果表明,考虑用户转发行为的8个影响因素,结合行为分析结果,能够较好地拟合信息传播过程。 相似文献
11.
12.
社交网络谣言转发行为是指用户是否转发特定谣言.以往研究主要针对的是谣言在群体中的传播规律,鲜有针对个体传播行为的研究.基于信息传播理论,研究首次提出两类谣言个体转发影响因素的框架:谣言发布者以及谣言内容对个体的影响力.研究使用NLP相关技术和复杂网络分析算法等技术计算出相关特征;最后使用常见分类算法进行预测用户是否转发... 相似文献
13.
随着全媒体时代的到来和社交网络的发展,流行度预测在舆情监测和数据话语权的争夺上开始发挥重要的作用。现有的流行度预测研究多集中于外文媒体,对以微博为代表的国内主流媒体进行流行度预测是一个新兴且具有挑战的方向。本文针对微博这一国内社交媒体平台进行研究,通过对微博内容及微博用户的特征分析,设计了多种流行度预测方案,同时,提出了一种基于XGBoost的微博流行度预测算法,将流行度预测问题转换为互动值档位分类问题,在分类式框架下将提取融合后的特征用于模型训练,可以较为准确地对有用户信息的微博的流行度情况进行预测。本文的算法在微博流行度预测数据集中得到验证,并且取得了准确率高达85.69%的优越效果。 相似文献
14.
为快速检测出信息传播的途径,减少恶意信息造成的影响,提出了一种迭代的融合用户内容与关系结构的用户影响力算法(CSIAI)。该算法通过用户微博内容建模,迭代计算出词-用户文档的相似性;另外通过微博的关注和被关注行为,建立用户关系结构,计算用户影响力权值,得到用户的影响力邻接矩阵,提取k个较大影响力的节点作为信息传播的路径。在检测仿真实验中,CSIAI以影响覆盖率和响应时间作为评价指标,根据扩充后的新知识库,确定CSIAI中参数α和β的关系。随着用户数量增长,CSIAI的影响覆盖率和响应时间性能明显优于PageRank、CELF和非迭代的融合用户内容与关系结构的用户影响力算法(CSIA)。实验结果表明,CSIAI能有效地检测到信息的传播情况。 相似文献
15.
16.
17.
转发是微博提供的一个信息传播的机制,用户能够将关注者发布的有趣微博转发到自身平台,然后分享给追随者,是微博网络中信息传播最重要的功能。对于微博网络存在的不同类型连接关系,首先提取出相关特征,如同质性、微网络结构、地理距离以及用户性别等,用于识别连接关系的不同类型,然后采用Log-linear模型来拟合各个特征间系数,基于这些系数对微博用户转发行为形成的内在原因进行了分析。 相似文献
18.
针对目前微博推荐模型未考虑传播特征的问题,提出一种基于传播树的微博推荐模型。首先利用树结构对微博传播特征进行表示,由内容、时间和用户三方面特征构成树的节点,以微博的转发和评论关系作为树的边;然后基于节点间关联关系和层次关系分别计算待评估微博传播树与目标用户每棵微博传播树的传播路径相似度和传播层相似度,以此量化两棵传播树间的结构相似度;最后根据相似度大小对所有待评估微博进行排序,生成推荐列表,实现微博推荐。实验结果表明,与未考虑传播特征的微博推荐模型相比,该模型在准确率、召回率和F1值上分别提升13.0%、9.6%和10.7%,合理利用微博传播特征可以提升推荐结果的可靠性,增强用户体验感。 相似文献