首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Methane (CH4) is produced in flooded rice fields by anaerobic decomposition of applied organic residues, root-derived materials and native soil organic matter (SOM). Since CH4 is an important greenhouse gas it is important to understand, and to be able to model, the processes which produce it. Anoxic incubation of soils employed in the cultivation of irrigated rice, with and without the addition of various potentially-available organic substrates, provides information on potential CH4 emissions which can be incorporated into process-based models. In this study, a simple two-pool model is employed to simulate the CH4 production of a number of anaerobically-incubated rice soils, and their responses to amendment with a variety of organic substrates. The model differs from most accounts of SOM transformation in that kinetics are microbially-mediated rather than first-order. Simulation yields a reproduction of the general trends of CH4 production in response to amendments of acetate, glucose and rice straw.  相似文献   

2.
Field measurements of CH4 emission from rice paddy field during cultivation periods were performed at all of 47 Japanese prefectures under the project of ‘Research for evaluation of CH4 and N2O emissions from agricultural land, and improvement methods of soil, water and fertilizer management’ conducted by Agricultural Production Bureau, the Ministry of Agriculture, Forestry and Fisheries. Although this project was carried out at 159 fields, the data of 132 fields were used for this report because other 27 fields had not enough data to be suitable for the statistics analyses. The measurements at rice paddy fields in various locations in Japan showed that there were large temporal variations of CH4 flux and that the fluxes differed markedly with climate, characteristics of soil and paddy, application of organic matter and mineral fertilizer, and agricultural management practices. These data mainly indicated that CH4 emission from Gley soils was greater than those from other soil types such as Andosols, Upland soils, fine-textured Lowland soils, medium and coarse-textured Lowlands soils and gravelly Lowland soils, and that water and organic matter managements influenced CH4 emission. It is suggested that midsummer drainage treatment suppressed while the application of fresh organic matter such as rice straw and wheat straw enhanced CH4 emission, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Greenhouse experiments were conducted under subtropical conditions to understand the mechanism of rice cultivar differences in methane (CH4) emission. Three rice cultivars were studied. Differences in CH4 emission rates among the three rice cultivars became evident in the middle and late growth stages. Rice root exudates per plant measured as total released C were significantly different among rice cultivars. The effect of root exudates on CH4 production in soil slurry differed accordingly. The amount of root exudates was not significantly different among rice cultivars when computed on a dry matter basis, indicating that it is positively correlated to root dry matter production. The root CH4-oxidizing activity differed among rice cultivars. IR65598 had a higher oxidative activity than IR72 and Chiyonishiki. Root air space was not significantly different among rice cultivars at the late growth stage, indicating that it is probably not a factor contributing to cultivar differences in CH4 emission. The population level of methanogenic bacteria differed significantly in soil grown to different rice cultivars, but not in roots, at booting stage and ripening stage. Methanotrophic bacteria population differed significantly in roots among rice cultivars at ripening. Rice cultivars with few unproductive tillers, small root system, high root oxidative activity, and high harvest index are ideal for mitigating CH4 emission in rice fields.  相似文献   

4.
This article comprises 4 yr of field experiments on methane (CH4) emissions from rice fields conducted at Los Baños, Philippines. The experimental layout allowed automated measurements of CH4 emissions as affected by water regime, soil amendments (mineral and organic), and cultivars. In addition to emission records over 24 h, ebullition and dissolved CH4 in soil solution were recorded in weekly intervals. Emission rates varied in a very wide range from 5 to 634 kg CH4 ha–1, depending on season and crop management. In the 1994 and 1996 experiments, field drying at midtillering reduced CH4 emissions by 15–80% as compared with continuous flooding, without a significant effect on grain yield. The net impact of midtillering drainage was diminished when (i) rainfall was strong during the drainage period and (ii) emissions were suppressed by very low levels of organic substrate in the soil. Five cultivars were tested in the 1995 dry and wet season. The cultivar IR72 gave higher CH4 emissions than the other cultivars including the new plant type (IR65597) with an enhanced yield potential. Incorporation of rice straw into the soil resulted in an early peak of CH4 emission rates. About 66% of the total seasonal emission from rice straw-treated plots was emitted during the vegetative stage. Methane fluxes generated from the application of straw were 34 times higher than those generated with the use of urea. Application of green manure (Sesbania rostrata) gave only threefold increase in emission as compared with urea-treated plots. Application of ammonium sulfate significantly reduced seasonal emission as compared with urea application. Correlation between emissions and combined dissolved CH4 concentrations (from 0 to 20 cm) gave a significant R2 of 0.95 (urea + rice straw), and 0.93 (urea + Sesbania), whereas correlation with dissolved CH4 in the inorganically fertilized soils was inconsistent. A highly significant correlation (R2 =0.93) existed between emission and ebullition from plots treated with rice straw. These findings may stimulate further development of diagnostic tools for easy and reliable determination of CH4 emission potentials under different crop management practices.  相似文献   

5.
The MERES (Methane Emissions from Rice EcoSystems) simulation model was tested using experimental data from IRRI and Maligaya in the Philippines and from Hangzhou in China. There was good agreement between simulated and observed values of total aboveground biomass, root weight, grain yield, and seasonal methane (CH4) emissions. The importance of the contribution of the rice crop to CH4 emissions was highlighted. Rhizodeposition (root exudation and root death) was predicted to contribute about 380 kg C ha–1 of methanogenic substrate over the season, representing 37% of the total methanogenic substrate from all sources when no organic amendments were added. A further 225 kg C ha–1 (22%) was predicted to come from previous crop residues, giving a total of around 60% originating from the rice crop, with the remaining 41% coming from the humic fraction of the soil organic matter (SOM). Sensitivity analysis suggested that the parameter representing transmissivity to gaseous transfer per unit root length (r) was important in determining seasonal CH4 emissions. As this transmissivity increased, more O2 was able to diffuse to the rhizosphere, so that CH4 production by methanogens was reduced and more CH4 was oxidized by methanotrophs. These effects outweighed the opposing influence of increased rate of transport of CH4 through the plant, so that the overall effect was to reduce the amount of CH4 emitted over the season. Varying the root-shoot ratio of the crop was predicted to have little effect on seasonal emissions, the increased rates of rhizodeposition being counteracted by the increased rates of O2 diffusion to the rhizosphere. Increasing the length of a midseason drainage period reduced CH4 emissions significantly, but periods longer than 6–7 d also decreased rice yields. Organic amendments with low C/N were predicted to be more beneficial, both in terms of enhancing crop yields and reducing CH4 emissions, even when the same amount of C was applied. This was due to higher rates of immobilization of C into microbial biomass, removing it temporarily as a methanogenic substrate.  相似文献   

6.
I discuss production, emission and oxidation of CH4 in rice paddy fields and N2O in fertilized soils. The quantity of CH4 emitted from rice paddy fields depends upon several important factors including soil factors, nutrient management, water regimes, cultivation practices and others. Important factors for N2O emitted from fertilized soils are soil water content, temperature, nitrate or ammonium concentration, available organic carbon for denitrification and pH. I provide an estimate of mitigation potential in agricultural systems based on this estimate and the management technology. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Experiments were conducted to investigate methane (CH4) production, oxidation, and emission from flooded rice soils. Incorporation of green manure (Sesbania rostrata) into rice fields led to a several-fold increase in CH4 emission. A stimulatory effect of organic sources on CH4 production in soil samples was noticed even under nonflooded conditions. Addition of rice straw at 1% (w/w) to nonflooded soil samples held at –1.5 MPa effected a 230-fold increase in CH4 production over that in corresponding unamended soil samples at 35 d, as compared with a threefold increase in rice straw-amended soil over that in unamended soil under flooded conditions. In a study involving two experimental field sites differing in water regimes but planted to the same rice cultivar (cv Gayatri) and fertilized with prilled urea at 60 kg N ha–1, the field plots with deep submergence of around 30 cm (site I) emitted distinctly more CH4 than did the plots with continuous water depth of 3–6 cm (site II). Likewise, in another incubation study, CH4 production in flooded soil samples increased with a progressive increase in standing water column from 5 mm to 20 mm. Application of carbamate insecticide, carbofuran, at 2 kg ai ha–1 to rice fields retarded CH4 emission through enhanced CH4 oxidation. Hexachlorocyclohexane was found to inhibit CH4 emission. The results suggest the need for extensive research efforts to develop technologies with dual objectives of environmental protection and crop productivity.  相似文献   

8.
To reduce the involved uncertainties in the methane budget estimation from rice paddy fields, the methodologies of methane budget estimation have been revised mainly on the basis of measurements undertaken in the Methane Asia Campaign (MAC-98). Studies from other continuous measurements of methane emission from rice paddy fields over last few years in other Asian countries were also used. The Asian Development Bank (ADB) sponsored Methane Asia Campaign (MAC-98) in which India, China, Indonesia, Philippines, Vietnam and Thailand participated during 1998–99.The resulting CH4 measurements have shown that apart from water management, soil organic carbon also plays a significant role in determination of methane emission factors from rice paddy fields. The available data from participating countries reveal that paddy soils can be broadly classified into low soil organic carbon (<0.7%C) and high soil organic carbon (>0.7% C) classes which show average methane emission factors of 12 (5–29) and 36 (22–57) g m–2 respectively for continuously flooded (CF) fields without organic amendments compared to the IPCC–96 emission factor of 20 g m–2. Similarly for irrigated paddy fields with intermittently flooded multiple aeration (IF-MA) without organic amendments, the MAC-98 gives average emission factors of 2 (0.06–3) and 6 (0.6–24) g m–2, respectively, for low and high organic carbon soils compared to IPCC–96 emission factor of 4 (0–10) g m–2. Incorporation of soil organic carbon along with classification based on water management and organic amendments in the estimation of CH4 emissions from rice paddy fields yields more characteristic emission factors for low and high organic carbon soils and is, therefore, capable of reducing uncertainties.  相似文献   

9.
Soil organic matter, roots (photosynthates) and applied organic materials (rice straw etc.) are the main sources of methane (CH4) emitted from paddy fields. The potential CH4 production in Japanese paddy fields were estimated from chemical properties of paddy soils of respective soil series, their acreage and thermal regimes during the rice growing period. The estimated amounts of potential CH4 production were from 24 to 54 kg-C ha-1 among 7 Districts in Japan, which are around one fifth of the amounts of CH4 emission observed from paddy fields in the world. 13CO2 uptake pot experiments were carried out three times from Aug. 8 to Sept. 25 to the treatment without rice straw applications in 1993 and four times from June 30 to Sept. 13 to the treatments with and without rice straw applications in 1994 to estimate the contribution of photosynthesized carbon to CH4 emission. The contribution percentages of photosynthesized carbon to the total CH4 emitted to the atmosphere were calculated to be 22% and 29-39% for the entire growth period in the treatments with and without rice straw applications, respectively. The relationship between the amount of CH4 emission to the atmosphere from submerged paddy soils with rice plants and the application level (0-8 g kg-1) of rice straw in soil was investigated in a pot experiment. The increase (Y) in cumulative amounts of CH4 with the increase in the application level of rice straw was formulated with a logistic curve: Y=k[a/(1 +be-cx)]; x, application level of rice straw; k, a coefficient for relative CH4 emission. Since the seasonal variations in coefficients a, b and c in the equation were also formulated as the function of the sum of effective temperature (E, Σ (T-15); T, daily average temperature), Y from any paddy soil by any level of rice straw application was known to be estimated by the equation: Y=k[a(E)/(1 +b(E)e-c(E)x)]. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Methane (CH4) flux measurements from rice paddy fields in the world and its controlling factors, especially fertilizer effects are summarized. The measurements at rice paddy fields in various locations of the world showed that there were large temporal variations of CH4 flux and that the flux differed markedly with climate, characteristics of soil and paddy, application of organic matter and mineral fertilizer, and agricultural practices. From the data, it appears that identifying and controlling CH4 flux factors have a potential to reduce CH4 emission from rice cultivation. Potential mitigation options include: the form and amount of nitrogen and other chemical fertilizers, the method of fertilizer applications, the application of other chemical amendments, water management and cultivation practices.  相似文献   

11.
Possible options for mitigating methane emission from rice cultivation   总被引:5,自引:0,他引:5  
Studies focused on mitigating CH4 emission from rice paddy fields are summarized and the possibilities and limits that the options might be applied to world's rice cultivation are discussed. The mitigation options are water management, soil amendments, organic matter management, different tillage, rotation, and cultivar selection. Altering water management, in particular promoting midseason aeration by short-term drainage, is one of the most promising strategies, although these practices may be limited to the rice paddy fields where the irrigation system is well prepared. Improving organic matter management by promoting aerobic degradation through composting or incorporating into soil during off-season drained period is another most promising candidate. There are several formidable obstacles to adopt the mitigation options into local rice farming, including limited applicability to different types of rice fields, increasing cost and labor, negative effects on rice yield and soil fertility, and time requirement for practical application. Further studies to verify the mitigation options should focus on the feasibility for local farmers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A comprehensive scientific assessment of CH4 budget estimation for Indian rice paddies, based on a decade of measurements in India, is presented. Indian paddy cultivation areas contain soils that have low to medium levels of soil organic carbon. The average seasonally integrated CH4 flux (E sif) values calculated from these measurements were 15.3 ± 2.6 g m–2 for continuously flooded (CF), 6.9 ± 4.3 g m–2 for intermittently flooded (IF) single aeration (SA) and 2.2 ± 1.5 g m–2 for IF multiple aeration (MA) rice ecosystems. For CF and IF (MA) rice ecosystems having high soil organic carbon, without organic amendments, the CH4 flux (E sif) may be increased by 1.7 times relative to low soil organic carbon, whereas it may enhance by 5.3 for CF if amended organically. Organic amendment and high soil organic carbon paddy areas do not alter the methane budget estimates for India (3.6±1.4 TgY–1) much, due to their small paddy harvested area. Methane estimated using average emission factors (E sif) for all paddy water regimes, which include harvested areas having soils with high organic carbon and organic amendments, may give a budget of 5 TgY–1 for India.  相似文献   

13.
Experiments were conducted during April-Oct. 1994 in a Beijing rice field. Four types of rice varieties have been tested. Large cultivar differences in methane emission flux have been found. Variety 93812 emitted about fivefold more CH4 than did the Qiuguang variety. An organic amendment plus (NH4)2SO4as the base fertilizer and (NH4)2SO4as the topdressing applied in different amounts and growth stages, compared with no topdressing, reduced methane emission about 58% and increased rice yield about 31.7%. Emission peaks of CH4 in the tillering stage and reproductive stage were suppressed. A comprehensive strategy could meet both the goal for sustainable rice productivity and methane reduction. Such a strategy includes: 1. Selection of cultivars which have reduced root exudate and litter but increased root mass most of which growing in the oxidized soil layer, cultivars also need an effective number of tillers for optimum yield but with less CH4transportation ability; 2. Application of organic manure combined with chemical fertilizers, that reduce CH4 emissions. Fertilizers such as SO4 2 -or other inhibitors can be maintained for a long period in soil; 3. Adoption of scientific irrigation mode such as flooding-drainage- intermittent irrigation ,that can both increase the rice yield and decrease the CH4 emission, etc.. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Methane (CH4) emissions from rice fields were monitored in Hangzhou, China, from 1995 to 1998 by an automatic measurement system based on the "closed chamber technique." The impacts of water management, organic inputs, and cultivars on CH4 emission were evaluated. Under the local crop management system, seasonal emissions ranging from 53 to 557 kg CH4 ha–1 were observed with an average value of 182 kg CH4 ha–1. Methane emission patterns differed among rice seasons and were generally governed by temperature changes. Emissions showed an increasing trend in early rice and a decreasing trend in late rice. In a single rice field, CH4 emissions increased during the first half of the growing period and decreased during the second half. Drainage was a major modifier of seasonal CH4 emission pattern. The local practice of midseason drainage reduced CH4 emissions by 44% as compared with continuous flooding; CH4 emissions could further be reduced by intermittent irrigation, yielding a 30% reduction as compared with midseason drainage. The incorporation of organic amendments promoted CH4 emission, but the amount of emission varied with the type of organic material and application method. Methane emission from fields where biogas residue was applied was 10–16% lower than those given the same quantity (based on N content) of pig manure. Rice straw applied before the winter fallow period reduced CH4 emission by 11% as compared with that obtained from fields to which the same amount of rice straw was applied during field preparation. Broadcasting of straw instead of incorporation into the soil showed less emission (by 12%). Cultivar selection influenced CH4 emission, but the differences were smaller than those among organic treatments and water regimes. Modifications in water regime and organic inputs were identified as promising mitigation options in southeast China.  相似文献   

15.
Methane Emission from Rice Fields at Cuttack, India   总被引:1,自引:0,他引:1  
Methane (CH4) emission from rice fields at Cuttack (State of Orissa, eastern India) has been recorded using an automatic measurement system (closed chamber method) from 1995–1998. Experiments were laid out to test the impact of water regime, organic amendment, inorganic amendment and rice cultivars. Organic amendments in conjunction with chemical N (urea) effected higher CH4 flux over that of chemical N alone. Application of Sesbania, Azolla and compost resulted in 132, 65 and 68 kg CH4 ha–1 in the wet season of 1996 when pure urea application resulted in 42 kg CH4 ha–1. Intermittent irrigation reduced emissions by 15% as compared to continuous flooding in the dry season of 1996. In the wet season of 1995, four cultivars were tested under rainfed conditions resulting in a range of emissions from 20 to 44 kg CH4 ha–1. Application of nitrification inhibitor dicyandiamide (DCD) inhibited while Nimin stimulated CH4 flux from flooded rice compared to that of urea N alone. Wide variation in CH4 production and oxidation potentials was observed in rice soils tested. Methane oxidation decreased with soil depth, fertilizer-N and nitrification inhibitors while organic amendment stimulated it. The results indicate that CH4 emission from the representative rainfed ecosystem at the experimental site averaged to 32 kg CH4 ha–1 yr–1.  相似文献   

16.
Methane Emissions from Irrigated Rice Fields in Northern India (New Delhi)   总被引:1,自引:0,他引:1  
Methane (CH4) emission fluxes from rice fields as affected by water regime, organic amendment, and rice cultivar were measured at the Indian Agricultural Research Institute, New Delhi, using manual and automatic sampling techniques of the closed chamber method. Measurements were conducted during four consecutive cropping seasons (July to October) from 1994 to 1997. Emission rates were very low (between 16 and 40 kg CH4 m–2 season–1) when the field was flooded permanently. These low emissions were indirectly caused by the high percolation rates of the soil; frequent water replenishment resulted in constant inflow of oxygen in the soil. The local practice of intermittent flooding, which encompasses short periods without standing water in the field, further reduced emission rates. Over the course of four seasons, the total CH4 emission from intermittently irrigated fields was found to be 22% lower as compared with continuous flooding. The CH4 flux was invariably affected by rice cultivar. The experiments conducted during 1995 with one cultivar developed by IRRI (IR72) and two local cultivars (Pusa 169 and Pusa Basmati) showed that the average CH4 flux from the intermittently irrigated plots without any organic amendment ranged between 10.2 and 14.2 mg m–2 d–1. The impact of organic manure was tested in 1996 and 1997 with varieties IR72 and Pusa 169. Application of organic manure (FYM + wheat straw) in combination with urea (1:1 N basis) enhanced CH4 emission by 12–20% as compared with fields treated with urea only. The site in New Delhi represents one example of very low CH4 emissions from rice fields. Emissions from other sites in northern India may be higher than those in New Delhi, but they are still lower than in other rice-growing regions in India. The practice of intermittent irrigation--in combination with low organic inputs--is commonly found in northern India and will virtually impede further mitigation of CH4 emissions in significant quantities. In turn, the results of this study may provide clues to reduce emissions in other parts of India with higher baseline emissions.  相似文献   

17.
Quantitative dependence of methane emission on soil properties   总被引:3,自引:0,他引:3  
To identify the key soil parameters influencing CH4 emission from rice paddies, an outdoor pot experiment with a total of 18 paddy soils was conducted in Nanjing Agricultural University during the 2000 rice growing season. The seasonal average rate of CH4 emission for all 18 soils was 6.42±2.70 mg m–2 h–1, with a range of 1.96 to 11.06 mg m–2 h–1. Correlation analysis indicated that the seasonal average of CH4 emission was positively dependent on soil sand content and negatively on total N as well as NH4 +-N determined before rice transplanting. Copper content of soils had a significant negative impact on CH4 emission. No clear relationship existed between CH4 emission and soil carbon content. In addition, soil type cannot explain the variability in CH4 emission. Soil parameters influencing CH4 emission were different as rice growth and development proceeded. A further investigation suggested that the seasonal average rate of CH4 emission could be quantitatively determined by a linear combination of soil NH4 +-N, available copper, the ratio of available to total sulphur, and the ratio of available to total iron. Moreover, the average rates of CH4 emission in the vegetative, reproductive and ripening stages could be also respectively described by a linear combination of different soil variables.  相似文献   

18.
An incubation experiment to determine the effects of organic and chemical N fertilizers on methane (CH4) production potential in a Chinese flooded rice soil was conducted. Organic matter, added as rice straw and organic manure, increased CH4 production rate significantly. Chemical N fertilizers such as ammonium bicarbonate (AB), modified ammonium bicarbonate (MAB), and urea (U) did not show a clear effect when they were applied with rice straw. Field results may be very different because of the involvement of rice plants. Organic manure showed different promoting effects on CH4 production rate. Pig manure stimulated the production rate most, followed by chicken and cattle manure. This difference in organic manure was not related to either total C added to the system or to C/N. The study on bacteria groups related to CH4 production indicated that the different effects of organic matter may be closely related to content of easily decomposable organic matter. A significant linear relationship between CH4 production and the logarithm of the number of zymogenic bacteria was found with an r value of 0.96. This finding suggests that the number of zymogenic bacteria may be used as an index to predict CH4 production potential in flooded rice fields and other wetlands.  相似文献   

19.
China is a major source of anthropogenic methane (CH4) emissions because it is the world's largest producer of rice grain, nearly all of which is grown in irrigated paddies. This study sought to reduce the uncertainty in estimates of CH4 emissions from rice cultivation in China by improving the quantification of the effects of management practices (intermittent drainage and fertilizer inputs) on emissions. These results were spatially extrapolated with digital maps of type of rice using new estimates of organic matter and fertilizer inputs, as well as estimates of soil drainage. The estimated total annual CH4 emissions from rice agriculture in China in 1990 were 9.9 ± 3.0 × 1012 g. If intermittent drainage practices were adopted on 33% of the poorly drained soils used for rice cultivation in southern China, the estimated emissions would be 8.9 ± 2.7 × 1012 g CH4 yr-1. Reducing projected organic matter inputs by 50% as a sensitivity analysis to reflect the trend for reduced use of organic fertilizer, resulted in emissions of 9.6 ± 2.9 × 1012 g CH4 yr-1, with 8.7 ± 6 × 1012 yr-1 emitted with 33% adoption of intermittent drainage on poorly drained paddies. Although intermittent drainage has been shown to reduce emissions by 50%, the area of rice that is relatively easy to drain and re-flood is not very large. The use of intermittent drainage with better drained paddies is limited because of problems with re-flooding and it is also limited with very poorly drained paddies that are difficult to drain. The 10% emission reduction predicted with 33% adoption of intermittent drainage practices, while not large, is conservative and may be possible to realize. These CH4 emissions results are relative estimates because the uncertainty remains large due to a lack of emissions measurements from paddies in more regions and a lack of detailed information about organic fertilizer application rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Methane (CH4) emissions from irrigated rice fields were measured using an automatic sampling-measuring system with a closed chamber method in 1995–98. Average emission rates ranged from 11 to 364 mg m–2 d–1 depending on season, water regime, and fertilizer application. Crop management typical for this region (i.e., midseason drainage and organic/mineral fertilizer application) resulted in emission of 279 and 139 mg CH4 m–2 d–1 in 1995 and 1997, respectively. This roughly corresponds to emissions observed in other rice-growing areas of China. Emissions were very intense during the tillering stage, which accounted for 85% of total annual emission, but these were suppressed by low temperature in the late stage of the season. The local irrigation practice of drying at mid-season reduced emission rates by 23%, as compared with continuous flooding. Further reduction of CH4 emissions could be attained by (1) alternate flooding/drying, (2) shifting the drainage period to an earlier stage, or (3) splitting drainage into two phases (of which one is in an earlier stage). Emission rates were extremely sensitive to organic amendments: seasonal emissions from fields treated with pig manure were 15–35 times higher than those treated with ammonium sulfate in the corresponding season. On the basis of identical carbon inputs, CH4 emission potential varied among organic amendments. Rice straw had higher emissions than cattle manure but lower emissions than pig manure. Use of cultivar Zhongzhuo (modern japonica) reduced CH4 emission by 56% and 50%, in 1995 and 1997, respectively, as compared with Jingyou (japonica hybrid) and Zhonghua (tall japonica). The results give evidence that CH4 emissions from rice fields in northern China can be reduced by a package of crop management options without affecting yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号