首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
曾念  谢建军  丁出  刘军霞 《化工进展》2014,33(12):3368-3373
针对大豆蛋白胶黏剂耐水性差的缺点,用尿素初步改性大豆分离蛋白(SPI),然后与白乳胶(PVAc)共混合成了共混改性大豆分离蛋白胶黏剂。采用正交实验方法考察了大豆蛋白胶与白乳胶质量比、共混时间、交联剂质量分数、交联时间对大豆蛋白胶黏剂剪切粘接强度的影响,确定了优化配比及制备工艺条件,并在此基础上采用正交试验优化了热压参数。结果表明:大豆蛋白胶与白乳胶质量比10∶1,共混时间1h,交联剂质量分数1.0%,交联时间1.5h,热压温度120℃,热压压强1.2MPa,热压时间2min/mm,涂胶量250g/m2时,测得胶黏剂的干态剪切粘接强度为2.01MPa,按照Ⅰ类胶合板标准测得湿态剪切粘接强度为1.04MPa,并对优化配方进行了结构与性能分析。  相似文献   

2.
豆基蛋白质胶粘剂改性及应用研究   总被引:2,自引:1,他引:1  
为了降低豆基蛋白质胶粘剂的黏度、提高胶合板的耐沸水胶接强度和满足工业化的生产要求,对传统豆基蛋白质胶粘剂进行改性,并通过胶粘剂的黏度、pH值、凝胶时间、耐沸水胶接强度以及热分析结果等确定了改性剂的合理用量。然后以热压温度、热压时间、热压压力和涂胶量作为试验因素,以胶接强度作为考核指标,采用正交试验法优选出制备胶合板用改性豆基蛋白质胶粘剂的较佳工艺条件。结果表明:改性剂的合理用量(质量分数)是40%;胶合板的较佳热压工艺参数是热压温度140℃,热压时间5 min,热压压力1.2 MPa,双面涂胶量310 g/m2;在此较佳热压工艺条件下制备的胶合板,其耐沸水胶接强度较理想(为1.12 MPa),并且满足Ⅰ类胶合板的标准要求。  相似文献   

3.
杨逸  杨光 《陕西化工》2012,(1):44-48
粉状胶粘剂具有贮存时间长、运输方便、含水量低的优点,为了防止热压过程中的"鼓泡"现象,促进大豆蛋白胶粉的应用,研究了用改性大豆蛋白胶粉制造胶合板的热压工艺,通过单因素实验和正交实验,得到最优组合为:胶粉施胶量120 g/m2,胶水施胶量230 g/m2,热压时间110 s/mm,热压压力132 MPa,此时胶合强度为0.98 MPa,达到国家标准Ⅱ类胶合板的要求。  相似文献   

4.
以12%PVA(聚乙烯醇)溶液为共混改性剂,制备了胶合板用改性大豆蛋白胶粘剂。着重探讨了PVA溶液用量、热压温度和热压时间对胶合板粘接性能的影响,并对该胶粘剂的结构进行了表征。研究结果表明:随着PVA溶液用量的增加,胶粘剂的黏度增大,但胶合板的粘接强度呈先降后升态势;当w(PVA)=80%(相对于大豆蛋白胶粘剂质量而言)、热压温度为130℃和热压时间为15 min时,胶合板的粘接性能相对最好;PVA和纯大豆蛋白之间存在较强的氢键作用,这是提升改性大豆蛋白胶粘剂粘接强度的主要原因。  相似文献   

5.
《粘接》2017,(10)
利用MUF共缩聚树脂制备杨木胶合板,对影响胶合板的热压工艺要素、胶粘剂黏度、陈放方式和不同陈放时间进行了优化和分析。结果表明,热压工艺3要素中,对杨木胶合板胶合强度的影响主次顺序为:热压温度热压时间热压压力;在杨木胶合板制备时,通过添加不同含量的淀粉,调节胶粘剂黏度,发现当淀粉添加量为胶粘剂用量的11%~15%时,胶合板胶接强度显著提高;通过对施胶后的单板进行陈放处理,结果发现无论是开口陈放还是闭口陈放,均可提高胶接强度,同时综合考虑陈放方式和陈放时间发现,以闭合陈放3 min时,胶接强度效果最佳。  相似文献   

6.
庞媛  杨光  杨波  翟艳 《应用化工》2011,(12):2096-2101
为了开发环境友好型刨花板,探讨利用大豆蛋白胶黏剂压制麻杆刨花板的制备工艺,分析热压温度、热压时间、施胶量和密度对麻杆刨花板性能的影响。结果表明,大豆蛋白胶可以用于麻杆刨花板的制造,其最佳工艺参数为:热压温度180℃,热压时间25 min,施胶量18%,密度0.80 g/cm3。在此条件下,压制的板材的性能超过GB/T 4897.4—2003的要求。  相似文献   

7.
通过对大豆粉采用碱处理使大豆蛋白质大分子结构展开,暴露出的官能团进一步与甲醛反应生成稳定的蛋白质,这种物质与苯酚共聚反应生成改性豆基蛋白胶黏剂。采用单因素实验方法,探讨了改性豆基蛋白胶黏剂压制杨木三层胶合板的胶合工艺。分析了热压温度、热压时间和涂胶量对胶合板胶合性能的影响。结果表明:采用改性后的豆基蛋白胶黏剂,在压力为1.4MPa,温度为165℃左右,热压时间为1.4~1.6min·mm^-1,涂胶量为220g·m^-2,压制的杨木胶合板胶合性能较佳且达到Ⅰ类胶合板的标准。  相似文献   

8.
杨波  杨光  耿玮蔚  王小冬 《应用化工》2011,40(11):1918-1921
为了解决乒乓球拍释放有毒气体的问题,研究以改性大豆蛋白胶为胶粘剂,采用不同的热压工艺对乒乓球拍底板进行粘合,通过运动员试打评价及胶合强度检测,得到最佳的压板工艺:热预压90 min,热压压力1.4 MPa,热压温度150℃,热压时间10 min。  相似文献   

9.
以改性异氰酸酯作为交联剂,制备改性豆基蛋白胶粘剂。探讨了交联剂、乳化剂和热压工艺条件等因素对该胶粘剂耐水胶接强度的影响。结果表明:当w(交联剂)=6%、u(乳化剂)=1.5%、热压时间为60 s/mm、热压压力为1.0 MPa和热压温度为120℃时,胶合板的耐水胶接强度为1.21 MPa,完全满足GB/T 9846.3—2004标准中Ⅱ类胶合板的使用要求,并且改性生豆基蛋白胶粘剂的适用期超过60 h。  相似文献   

10.
大豆蛋白胶黏剂改性技术的研究进展   总被引:1,自引:0,他引:1  
《应用化工》2017,(10):2043-2047
简要阐述了大豆蛋白胶改性的主要原理,介绍了大豆蛋白胶物理改性、化学改性及酶改性的概念、不同改性方法的研究进展,指出了大豆蛋白胶粘剂黏度低的原因,大豆蛋白胶现阶段主要用于胶合板及刨花板的黏结,并对各种改性方法的优缺点进行了总结。最后对改性后的大豆蛋白胶在其他领域的应用进行了展望。  相似文献   

11.
大豆蛋白胶竹地板制作工艺的优化   总被引:2,自引:0,他引:2  
刘苗苗  杨光  李琴  袁少飞 《陕西化工》2013,(11):1981-1985
以胶液固含量、热固化时间和热固化温度作为Box-Behnken设计的变量,用响应面法优化大豆蛋白胶竹地板制作工艺条件。结果表明,大豆蛋白胶竹地板制作的优化工艺条件为:胶液固含量13.1%,热固化时间为7.8h,热固化温度为131℃。在此条件卞,大豆蛋白胶竹地板的2h吸水厚度膨胀率为3.0%,静曲强度为107.3MPa。  相似文献   

12.
大豆7S与11S球蛋白尿素变性后的粘接性质研究   总被引:2,自引:0,他引:2  
随着人们对环境保护意识的增加和地球有限资源的缺乏,大豆蛋白在胶粘剂工业中的应用也越来越显示出强大的吸引力,鉴于前人的研究成果,文章研究了大豆7S和11S球蛋白经过尿素变性后在松木、樱桃木和胡桃木上的粘接强度和湿润能力。结果表明在不同的木块上不同胶粘剂有不同的粘接强度和湿润性能。7S大豆蛋白尿素变性后在硬木上有较好的湿润性。1M尿素变性赋予11S蛋白的粘接强度最高,3M尿素变性后,7S蛋白在硬木上的粘接强度大于11S蛋白。蛋白质的二级结构测量表明β-折叠对于3 M尿素变性后的大豆蛋白在硬木上的粘接强度起着重要作用,而无规则卷曲是降低1 M尿素变性7S大豆蛋白粘接强度的主要因素。  相似文献   

13.
Bamboo–steel composite structure is constructed with bamboo plywood and cold-formed thin-walled steel, which are bonded by structural adhesive. To investigate the failure behavior of the adhesive bonded interface between bamboo plywood and steel, both experimental and numerical analyses were performed. An adhesive bonded member was designed to observe the failure behavior through the variation of stress distribution on steel sheet under tension. Further analysis of failure behavior was carried out by the numerical model through the stress analysis at the adhesive bonded interfaces. The experimental and numerical analyses revealed the failure mainly occurred at the adhesive bonding interface, caused by the stress concentration at the end of the overlap. The influences of modulus of elasticity of bamboo plywood in the parallel to grain direction and the thickness of steel sheet on the stress distribution at the adhesive bonding interface were investigated, which indicated the stress distribution had a major effect on the load-carrying capacity of the composite structural member. It also suggests enlarging the geometry properly and choosing the bamboo plywood with large modulus of elasticity in the parallel to grain direction are effective to increase the load-carrying capacity.  相似文献   

14.
尿素变性对大豆分离蛋白粘接强度和分子结构的影响   总被引:3,自引:0,他引:3  
大豆分离蛋白基胶粘剂由于具有环境友好性、生物降解性和可再生性而受到人们的关注。研究了尿素变性对大豆分离蛋白粘接强度及对蛋白分子结构的影响。结果表明,蛋白质经过尿素变性后,随着尿素浓度的增加,蛋白质分子展开的程度过大反而对粘接强度有不利的影响。在对榉木进行粘接时,1mol/L尿素变性获得的粘接强度最大。  相似文献   

15.
Adhesive qualities of soybean protein-based foamed plywood glues   总被引:1,自引:0,他引:1  
The potential of soy protein-based plywood glues for foam extrusion was evaluated. Standard glue mixes containing the soy flours Honeysoy 90, ISU-CCUR, Nutrisoy 7B, and defatted Soyafluff, and the soy concentrates Arcon F and Procon 2000 showed excellent foaming and adhesive qualities but did not have the ability to refoam. To improve refoaming capability, the formulations were modified by increasing the quantities of soy flour or concentrate so that they provided 3.48 g protein/100 g of glue mix. This was the amount of protein contributed by animal blood when it was used as the extender in the standard formulation for foamed glue. All the modified glues containing soy flour or concentrate had good refoaming properties and adhesive strengths that were at least equal to that of the control glue. Simple cost analysis also indicated that when soy flour was used, the modified formulations were cheaper to produce than the current blood-based glue.  相似文献   

16.
A novel adhesive that is solely based on natural materials of defatted soy flour (SF) and magnesium oxide (MgO) has been investigated for preparation of five‐ply plywood panels. The resulting plywood panels met the industrial water‐resistant requirement for interior plywood. In this study, mechanisms by which an aqueous mixture of SF and MgO served as a strong and water‐resistant adhesive for bonding wood were investigated. SF was first fractionated into soy protein isolates (SPI), a water‐soluble fraction, and insoluble carbohydrates (ICs) that were mixed with MgO, respectively, for preparation of maple laminates. The water resistance of the resulting maple laminates was evaluated by a three‐cycle water‐soaking‐and‐drying (WSAD) test and a two‐cycle boiling‐water test (BWT). The mixture of MgO and the soluble fraction was not able to bond maple veneers together. The shear strengths of the resulting maple laminates before and after WSAD and BWT all had the following order: MgO–SPI > MgO–SF > SF only > MgO–IC. The water solubility of SF in the heat‐cured SF–MgO mixture was much lower than that of the heat‐cured SF. We believe that the low water solubility of SF–MgO and close interactions between MgO and soy proteins instead of soy carbohydrates were responsible for the superior strengths and high water resistance of the soy‐MgO adhesive.  相似文献   

17.
In this research, two different types of commercial tannins, namely a hydrolysable tannin (chestnut) and a condensed flavonoid tannin (mimosa), were used to prepare two types of soy-based (soy flour (SF) and soy protein isolate) adhesives for making plywood. Thermogravimetric properties (TGA) and its derivative as function of temperature (DTG) of different soy-based adhesive were measured in the range 40°C–300°C. Thermomechanical analysis (TMA) from 25°C to 250°C was done for the different resin formulations. Duplicate three-ply laboratory plywood panels were prepared by adding 300 g/m2 of the adhesives’ total resin solid content composed of SF or isolated soy protein (ISP), urea, chestnut, and mimosa tannin extracts with hexamine as hardener. Based on the results obtained, tannins can improve SF adhesion properties. The TMA showed that chestnut tannin extract appeared to react well with SF, while mimosa tannin extract appeared to react well with ISP. Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry also showed that among other reactions, the soy protein amino acids reacted with the tannins. Furthermore, delamination and shear strength test results showed the good water resistance of plywood bonded with soy-based tannin modified adhesive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号