首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance CMOS circuits are fabricated from excimer-laser-annealed poly-Si TFTs on a glass substrate (300×300 mm). The propagation delay time of the 121 stage CMOS ring oscillators with 0.5 μm gate length is 0.18 nsec at 5 V supply voltage. The maximum operating frequency of the 40-stage shift registers with 1 μm gate length is 133 MHz at 5 V supply voltage. This value is high enough for peripheral CMOS circuits with line-at-a-time addressing  相似文献   

2.
Novel full-swing BiCMOS/BiNMOS logic circuits using bootstrapping in the pull-up section for low supply voltage down to 1 V are reported. These circuit configurations use noncomplementary BiCMOS technology. Simulations have shown that they outperform other BiCMOS circuits at low supply voltage using 0.35 μm BiCMOS process. The delay and power dissipation of several NAND configurations have been compared. The new circuits offer delay reduction between 40 and 66% over CMOS in the range 1.2-3.3 V supply voltage. The minimum fanout at which the new circuits outperform CMOS gate is 5, which is lower than that of other gates particularly for sub-2.5 V operation  相似文献   

3.
This paper describes a leading-edge 0.13 μm low-leakage CMOS logic technology. To achieve competitive off-state leakage current (I off) and gate delay (Td) performance at operating voltages (Vcc) of 1.5 V and 1.2 V, devices with 0.11 μm nominal gate length (Lg-nom) and various gate-oxide thicknesses (Tox) were fabricated and studied. The results show that low power and memory applications are limited to oxides not thinner than 21.4 Å in order to keep acceptable off-state power consumption at Vcc=1.2 V. Specifically, two different device designs are introduced here. One design named LP (Tox=26 Å) is targeted for Vcc=1.5 V with worst case Ioff <10 pA/μm and nominal gate delay 24 ps/gate. Another design, named LP1 (Tox=22 Å) is targeted for Vcc =1.2 V with worst case Ioff<20 pA/μm and nominal gate delay 27 ps/gate. This work demonstrates n/pMOSFETs with excellent 520/210 and 390/160 μA/μm nominal drive currents at Vcc for LP and LP1, respectively. Process capability for low-power applications is demonstrated using a CMOS 6T-SRAM with 2.43 μm2 cell size. In addition, intrinsic gate-oxide TDDB tests of LP1 (T ox=22 Å) demonstrate that gate oxide reliability far exceeding 10 years is achieved for both n/pMOSFETs at T=125°C and V cc=1.5 V  相似文献   

4.
The trade-off between threshold voltage (Vth) and the minimum gate length (Lmin) is discussed for optimizing the performance of buried channel PMOS transistors for low voltage/low power high-speed digital CMOS circuits. In a low supply voltage CMOS technology it is desirable to scale Vth and Lmin for improved circuit performance. However, these two parameters cannot be scaled independently due to the channel punch-through effect. Statistical process/device modeling, split lot experiments, circuit simulations, and measurements are performed to optimize the PMOS transistor current drive and CMOS circuit speed. We show that trading PMOS transistor Vth for a smaller Lmin results in faster circuits for low supply voltage (3.3 to 1.8 V) n+-polysilicon gate CMOS technology, Circuit simulation and measurements are performed in this study. Approximate empirical expressions are given for the optimum buried channel PMOS transistor V th for minimizing CMOS circuit speed for cases involving: (1) constant capacitive load and (2) load capacitance proportional to MOS gate capacitance. The results of the numerical exercise are applied to the centering of device parameters of a 0.5 μm 3.3 V CMOS technology that (a) matches the speed of our 0.5 μm 5 V CMOS technology, and (b) achieves good performance down to 1.8 V power supply. For this process the optimum PMOS transistor Vth (absolute value) is approximately 0.85-0.90 V  相似文献   

5.
Novel full-swing BiCMOS/BiNMOS logic circuits which use Schottky diode in the pull-up section for low supply-voltage regime are developed. The full-swing pull-up operation is performed by saturating the bipolar transistor with a base current pulse. After which, the base is isolated and bootstrapped to a voltage higher than VDD. The BiCMOS/BiNMOS circuits do not require a PNP bipolar transistor. They outperform other BiCMOS circuits at low supply voltage, particularly at 2 V using 0.5 μm BiCMOS technology. Delay, area, and power dissipation comparisons have been performed. The new circuits offer delay reduction at 2 V supply voltage of 37% to 56% over CMOS. The minimum fanout at which the new circuits outperform CMOS gate is 2 to 3. Furthermore, the effect of the operating frequency on the delay of a wide range of BiCMOS and BiNMOS circuits is reported for the first time, showing the superiority of the Schottky circuits  相似文献   

6.
We report the fabrication and characterization of a depletion-mode n-channel ZnS0.07Se0.93 metal-semiconductor field effect transistor (MESFET). A ZnSSe FET could be a key element in opto-electronic integration consisting of light emitters, light receivers and MESFET pre-amplifiers. Mesa isolation, recess etching and self-alignment techniques were adopted to optimize the MESFET performance. Source and drain (S/D) ohmic contacts and gate Schottky contact were formed by Cr/In/Cr and Au deposition, respectively. Depletion mode FET's with varying gate width-to-length ratio of W/L=200 μm/20 μm, 200 μm/4 μm and 200 μm/2 μm were fabricated. A 2 μm FET was characterized as follows: the turn-on voltage, Von≈1.75 V, the pinch-off voltage, Vp≈-13 V, the unit transconductance, gm≈8.73 mS/mm, and the breakdown voltage with zero gate-source bias, BV≈28 V  相似文献   

7.
A Thin-Film-Silicon-On-Insulator Complementary BiCMOS (TFSOI CBiCMOS) technology has been developed for low power applications. The technology is based on a manufacturable, near-fully-depleted 0.5 μm CMOS process with the lateral bipolar devices integrated as drop-in modules for CBiCMOS circuits. The near-fully-depleted CMOS device design minimizes sensitivity to silicon thickness variation while maintaining the benefits of SOI devices. The bipolar device structure emphasizes use of a silicided polysilicon base contact to reduce base resistance and minimize current crowding effects. A split-oxide spacer integration allows independent control of the bipolar base width and emitter contact spacing. Excellent low power performance is demonstrated through low current ECL and low voltage, low power CMOS circuits. A 70 ps ECL gate delay at a gate current of 20 μA is achieved. This represents a factor of 3 improvement over bulk trench-isolated double-polysilicon self-aligned bipolar circuits. Similarly, CMOS gate delay shows a factor of 2 improvement over bulk silicon at a power supply voltage of 3.3 V. Finally, a 460 μW 1 GHz prescaler circuit is demonstrated using this technology  相似文献   

8.
This paper describes a SOI LDMOS/CMOS/BJT technology that can be used in portable wireless communication applications. This technology allows the complete integration of the front-end circuits with the baseband circuits for low-cost/low-power/high-volume single-chip transceiver implementation. The LDMOS transistors (0.35 μm channel length, 3.8 μm drift length, 4.5 GHz fT and 21 V breakdown voltage), CMOS transistors (1.5 μm channel length, 0.8/-1.2 V threshold voltage), lateral NPN transistor (18 V BVCBO and h FE of 20), and high Q-factor (up to 6.1 at 900 MHz and 7.2 at 1.8 GHz) on-chip inductors are fabricated. A fully-functional high performance integrated power amplifier for 900 MHz wireless transceiver application is also demonstrated  相似文献   

9.
We fabricated 0.35-μm gate-length pseudomorphic HEMT DCFL circuits using a highly doped thin InGaP layer as the electron supply layer. The InGaP/InGaAs/GaAs pseudomorphic HEMT grown by MOVPE is suitable for short gate-length devices with a low supply voltage since it does not show short channel effects even for gate length down to 0.35 μm. We obtained a K value of 555 mS/Vmm and a transconductance gm of 380 mS/mm for an InGaP layer 18.5 nm thick. Fabricated 51-stage ring oscillators show the basic propagation delay of 11 ps and the power-delay product of 7.3 fJ at supply voltage of VDD of 1 V, and 13.8 ps and 3.2 fJ at VDD of 0.6 V for gates 10 μm wide  相似文献   

10.
Two new bipolar complementary metal-oxide-semiconductor (BiCMOS) differential logic circuits called differential cross-coupled bootstrapped BiCMOS (DC2B-BiCMOS) and differential cross-coupled BiCMOS (DC2-BiCMOS) logic are proposed and analyzed. In the proposed two new logic circuits, the novel cross-coupled BiCMOS buffer circuit structure is used to achieve high-speed operation under low supply voltage. Moreover, a new bootstrapping technique that uses only one bootstrapping capacitor is adopted in the proposed DC2B-BiCMOS logic to achieve fast near-full-swing operation at 1.5 V supply voltage for two differential outputs. HSPICE simulation results have shown that the new DC2B-BiCMOS at 1.5 V and the new DC2-BiCMOS logic at 2 V have better speed performance than that of CMOS and other BiCMOS differential logic gates. It has been verified by the measurement results on an experimental chip of three-input DC2B-BiCMOS XOR/XNOR gate chain fabricated by 0.8 μm BiCMOS technology that the speed of DC2-BiCMOS at 1.5 V is about 1.8 times of that of the CMOS logic at 1.5 V. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed DC2B-BiCMOS and DC2-BiCMOS logic circuits are feasible for low-voltage, high-speed applications  相似文献   

11.
Pulse propagation problems associated with dynamic floating-body effects, e.g., pulse stretching, is measured in partially depleted SOI CMOS inverter chains. Pulse stretching is found to be dependent on pulse frequency and VDD. Such behavior is attributed to floating-body-induced transient threshold voltage variation in partially depleted SOI CMOS devices due to floating-body charge imbalance between logic states during CMOS switching. Such an imbalance can be minimized through proper device design because of the different dependencies of the gate and drain depletion charges on channel length, silicon film thickness, gate oxide thickness, channel doping, and supply voltage. This is confirmed by measuring the maximum transient threshold voltage variation in discrete partially depleted SOI NMOS devices in configurations which are predictive of CMOS switching behavior  相似文献   

12.
New true-single-phase-clocking (TSPC) BiCMOS/BiNMOS/BiPMOS dynamic logic circuits and BiCMOS/BiNMOS dynamic latch logic circuits for high-speed dynamic pipelined system applications are proposed and analyzed. In the proposed circuits, the bootstrapping technique is utilized to achieve fast near-full-swing operation. The circuit performance of the proposed new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications are simulated by using HSPICE with 1 μm BiCMOS technology. Simulation results have shown that the new dynamic logic circuits and dynamic latch logic circuits in both domino and pipelined applications have better speed performance than that of CMOS and other BiCMOS dynamic logic circuits as the supply voltage is scaled down to 2 V. The operating frequency and power dissipation/MHz of the pipelined system, which is constructed by the new clock-high-evaluate-BiCMOS dynamic latch logic circuit and clock-low-evaluate-BiCMOS (BiNMOS) dynamic latch logic circuit, and the logic units with two stacked MOS transistors, are about 2.36 (2.2) times and 1.15 (1.1) times those of the CMOS TSPC dynamic logic under 1.5-pF output loading at 2 V, respectively. Moreover, the chip area of these two BiCMOS pipelined systems is about 1.9 times and 1.7 times as compared with that of the CMOS TSPC pipelined system. A two-input dynamic AND gate fabricated with 1 μm BiCMOS technology verifies the speed advantage of the new BiNMOS dynamic logic circuit. Due to the excellent circuit performance in high-speed, low-voltage operation, the proposed new dynamic logic circuits and dynamic latch logic circuits are feasible for high-speed, low-voltage dynamic pipelined system applications  相似文献   

13.
Submicrometer-channel CMOS devices have been integrated with self-aligned double-polysilicon bipolar devices showing a cutoff frequency of 16 GHz. n-p-n bipolar transistors and p-channel MOSFETs were built in an n-type epitaxial layer on an n+ buried layer, and n-channel MOSFETs were built in a p-well on a p+ buried layer. Deep trenches with depths of 4 μm and widths of 1 μm isolated the n-p-n bipolar transistors and the n- and p-channel MOSFETs from each other. CMOS, BiCMOS, and bipolar ECL circuits were characterized and compared with each other in terms of circuit speed as a function of loading capacitance, power dissipation, and power supply voltage. The BiCMOS circuit showed a significant speed degradation and became slower than the CMOS circuit when the power supply voltage was reduced below 3.3 V. The bipolar ECL circuit maintained the highest speed, with a propagation delay time of 65 ps for CL=0 pF and 300 ps for CL=1.0 pF with a power dissipation of 8 mW per gate. The circuit speed improvements in the CMOS circuits as the effective channel lengths of the MOS devices were scaled from 0.8 to 0.4 μm were maintained at almost the same ratio  相似文献   

14.
We have developed integrated circuits in rapid single flux quantum (RSFQ) impulse logic based on intrinsically shunted tunnel junctions as the active circuit elements. The circuits have been fabricated using superconductor-insulator-normalconductor-insulator-superconductor (SINIS) multilayer technology. The paper presents experimental results of the operation of various RSFQ circuits realized in different designs and layouts. The circuits comprise dc/SFQ and SFQ/dc converters, Josephson transmission lines (JTLs), T-flipflops, and analog key components. Functionality has been proved; the circuits have been found to operate correctly in switching. The circuits investigated have a critical current density of jC=400 A/cm2 and a characteristic voltage of VC=165 μV, the area of the smallest junction is A=24 μm2. The junctions exhibit nearly hysteresis-free current-voltage characteristics (hysteresis: less than 7%), the intra-wafer parameter spread for jC is below ±8%. The margins of the bias current Ib of the circuits have been experimentally determined and found to be larger than ±24%. At preset, constant values of Ib, the range of a separate bias current Ibsw fed to a switching stage integrated between two segments of JTL's is fully covered by the operation margins which are larger than ±56%  相似文献   

15.
A single poly EEPROM cell structure implemented in a standard CMOS Process is developed. It consists of adjacently placed NMOS and PMOS transistors with an electrically isolated common polysilicon gate. The common gate works as a “floating gate”. The inversion layer as “control node (gate)”. Test chips which were fabricated in a 0.8 μm/150 Å standard CMOS logic process showed 5-9 V of threshold voltage shift and more than 10000 cycles of endurance with good data retention under high temperature. This EEPROM cell can be easily integrated with CMOS digital and analog circuits  相似文献   

16.
The switching performance of 0.10 μm CMOS devices operating at room temperature has been discussed on the basis of both experimental and simulated results. The measured propagation delay time of a 0.10 μm gate length CMOS has been quantitatively divided into intrinsic and parasitic components for the first time. The results have shown that the drain junction capacitance strongly affects the propagation delay time in the present 0.10 μm CMOS. The switching performance of a 0.10 μm ground rule CMOS has been simulated by using device parameters extracted from the experimental results. In the 0.10 μm ground rule CMOS, it has been shown that an increase of the contact resistance will degrade the propagation delay time, which is one of the most essential problems in further device miniaturization. It has been also demonstrated that even if the specific contact resistance ρc is reduced to be less than 1×10-7 Ω cm, further reduction of the gate overlap capacitance Cov will be required to achieve the propagation delay time to be less than 10 ps in the 0.10 μm ground rule CMOS at room temperature  相似文献   

17.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   

18.
We have fabricated a SOI laterally diffused MOSFET that is designed for use in radio frequency power amplifiers for wireless system-on-a-chip applications. The device is fabricated on a thin-film SOI wafer using a process that is suitable for integration with SOI CMOS. An under-source body contact is implemented and both a high breakdown voltage and a high ft are attained. The device performance compares favorably with bulk silicon rf power MOSFETs. For a gate length of 0.7 μm the device ft is 14 GHz, fmax is 18 GHz, and the breakdown voltage approaches 25 V  相似文献   

19.
对多晶硅双栅全耗尽SO I CM O S工艺进行了研究,开发出了1.2μm多晶硅双栅全耗尽SO I CM O S器件及电路工艺,获得了性能良好的器件和电路。NM O S和PM O S的阈值电压绝对值比较接近,且关态漏电流很小,NM O S和PM O S的驱动电流分别为275μA/μm和135μA/μm,NM O S和PM O S的峰值跨导分别为136.85 m S/mm和81.7 m S/mm。在工作电压为3 V时,1.2μm栅长的101级环振的单级延迟仅为66 ps。  相似文献   

20.
New gate logics, standby/active mode logic I and II, for future 1 Gb/4 Gb DRAMs and battery operated memories are proposed. The circuits realize sub-l-V supply voltage operation with a small 1-μA standby subthreshold leakage current, by allowing 1 mA leakage in the active cycle. Logic I is composed of logic gates using dual threshold voltage (Vt) transistors, and it can achieve low standby leakage by adopting high Vt transistors only to transistors which cause a standby leakage current. Logic II uses dual supply voltage lines, and reduces the standby leakage by controlling the supply voltage of transistors dissipating a standby leakage current. The gate delay of logic I is reduced by 30-37% at the supply voltage of 1.5-1.0 V, and the gate delay of logic II is reduced by 40-85% at the supply voltage of 1.5-0.8 V, as compared to that of the conventional CMOS logic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号