首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organotypic cocultures of dorsal root ganglia and spinal cord from embryonic rats provides direct access to spinal interneurons in a culture system in which the cytoarchitectural organization of the spinal cord slice is maintained. This preparation was used to investigate the possible induction of rhythmic behaviour at different times of development in vitro. Spontaneous rhythmic bursts induced by coapplication of strychnine (1 microM) and bicuculline (20 microM) were observed with patch-clamp recordings from ventral interneurons. Ventral horn interneurons consistently developed a very regular pattern of activity which was superimposed on a background of sustained synaptic activity. The pattern of the spontaneous bursting following application of strychnine and bicuculline showed a developmentally regulated difference in frequency between two distinct stages of in vitro development.  相似文献   

2.
1. We hypothesized that burst activity induced in rat hippocampal tissue by a high-K+ medium in vitro would be increased by a previous episode of global ischaemia, severe enough to induce persistent neurological dysfunction. 2. Male Wistar rats that were subjected to 9 min of chest compression, sufficient to reduce blood pressure (BP) to zero, showed evidence of neurological damage attributed to a global ischaemic insult. Hindlimb function was impaired for 24-48 h and a susceptibility to sound-induced seizures was induced in 25 to 35 rats. The seizure susceptibility cleared spontaneously within 2 weeks in 10 of 25 rats. 3. Hippocampal slices from postischaemic rats were prepared, tested for viability and were then exposed to an 8.0 mmol/L K+ artificial cerebrospinal fluid in vitro. Spontaneous epileptiform bursting activity in the high-K+ medium was not increased. Instead, burst size decreased with time after ischaemia. 4. The decrement in bursting activity is attributed to loss of cellular activity or integrity. These changes correlate with functional changes described by others, but not necessarily to histologically verifiable cell death. The time course of these changes was remarkably long, continuing for almost 3 weeks. Thus, a less-than-lethal ischaemia appears to induce neuronal changes, possibly reversible, that continue for at least 20 days after the global ischaemic insult.  相似文献   

3.
The rhythmogenesis of 10-Hz sleep spindles is studied in a large-scale thalamic network model with two cell populations: the excitatory thalamocortical (TC) relay neurons and the inhibitory nucleus reticularis thalami (RE) neurons. Spindle-like bursting oscillations emerge naturally from reciprocal interactions between TC and RE neurons. We find that the network oscillations can be synchronized coherently, even though the RE-TC connections are random and sparse, and even though individual neurons fire rebound bursts intermittently in time. When the fast gamma-aminobutyrate type A synaptic inhibition is blocked, synchronous slow oscillations resembling absence seizures are observed. Near-maximal network synchrony is established with even modest convergence in the RE-to-TC projection (as few as 5-10 RE inputs per TC cell suffice). The hyperpolarization-activated cation current (Ih) is found to provide a cellular basis for the intermittency of rebound bursting that is commonly observed in TC neurons during spindles. Such synchronous oscillations with intermittency can be maintained only with a significant degree of convergence for the TC-to-RE projection.  相似文献   

4.
Extracellular recordings were made from identified sympathetic preganglionic neurones (SPN) located in the second and third thoracic segments of the adult rat spinal cord, in-vivo. Iontophoretic application of the amines, 5-hydroxytryptamine (5-HT) and noradrenaline (NAdr) in the vicinity of these neurones evoked either long lasting excitations, inhibitions or bi-phasic changes (inhibition followed by excitation, 5-HT only) in neuronal firing rate. The excitatory response to both 5-HT or NAdr could only be obtained in spontaneously active neurones, or silent neurones, in which a subliminal level of an excitatory amino acid (EAA) was also present. In 4 neurones, the response evoked by NAdr was dependent on neuronal firing rate and hence the level of EAA present. At low basal firing rates, inhibitions were observed whereas at higher firing rates, excitations were observed. Subliminal levels of either 5-HT or NAdr markedly potentiated the increases in neuronal firing rate evoked by an EAA. In a sub-population of SPN, both 5-HT (18/88 neurones) and NAdr (21/51 neurones) induced a repeated bursting pattern of action potential discharge during the amine evoked changes in neuronal firing rate in otherwise irregularly discharging neurones. We conclude that these actions of the monoamines, that is excitations or inhibitions, gain enhancement, prolongation of action, burst firing and oscillations are likely to be due to the modulation by these agents of intrinsic membrane conductances. The differing responses evoked in SPN will produce marked differences in the efficacy of synaptic transmission in the sympathetic ganglia. As a result of these mechanisms, there will be a greater versatility in the sympathetic control systems than would otherwise exist.  相似文献   

5.
A comparison was made of rat primary astrocytes, C6 glioma cells pre-treated with dibutyryl cyclic AMP, and the human astrocyte 132N1 cell line using a range of 40 compounds and the neutral red (NR) assay. The 40 chemicals included substances known to be toxic to astrocytes or neurons, to be generally cytotoxic or not thought to be toxic to nervous tissue. For those compounds which were toxic, changes in glial fibrillary acidic protein (GFAP) levels were measured in the primary and C6 cultures, and changes in vimentin and S-100 measured in the C6 cells. The number of compounds with EC50 values < 2000 microg/ml for the NR assay for the different cell cultures were as follows: primary astrocytes, 19; C6 cells, 15; and 1321N1 cells, 11. The log of the EC50 values for the NR assay for the test compounds between the three cell types was not significantly different at the 5% level by paired Student's t-test. For the toxic substances the correlation coefficients of the EC50 values between primary cells and the C6 or 1321N1 cells were r > 0.5, and between the C6 and 1321N1 cells r > 0.9. For GFAP there was a similar degree of correlation in EC50 values between the different cell types. The GFAP, vimentin and S-100 levels showed similar EC50 values for the toxicants, but were not as sensitive as the NR assay. The toxic substances caused altered morphology in the primary, C6 and 1321N1 cells, with increased branching of cell processes. The combined astrocyte systems identified 8 out of 9 substances reported to be toxic to astrocytes in vivo, together with substances which have general cytotoxic properties. A number of substances (including the 1 out of 9 reported gliotoxic substances), which may primarily affect neurons, which may affect nervous tissue after long-term exposure, or which are not thought to be toxic to nervous tissue, were not detected. The astrocyte systems positively identify gliotoxic and cytotoxic substances and will allow detailed mechanistic studies to be made on the different underlying mechanisms.  相似文献   

6.
Intrinsic sinusoidal oscillations in membrane potential, characteristic of nigral dopamine cells, are converted to plateau potentials following application of apamin, a potent antagonist of SK-type Ca2+-activated K+ channels. Blockade of these channels also changes neuronal firing pattern from a single-spike pacemaker discharge to a multiple spike bursting pattern. Nifedipine, a selective antagonist of L-type Ca2+ channels, blocks plateau potential generation; however, its effects on firing pattern have yet to be determined. In the present study, extracellular single unit recording techniques were used in conjunction with a brain slice preparation to determine whether nifedipine, in a concentration known to block plateau potential generation, also affects bursting activity. Nifedipine (30 microM) was equipotent in inhibiting the firing rate of control (51.2+/-10.8%) and apamin-treated (44.9+/-5.4%) neurons. Slow firing neurons (<2 Hz) were particularly sensitive to the inhibitory effects of the drug. Apamin-induced bursting was completely suppressed by nifedipine and accompanied by a significant increase in the regularity of firing. By contrast, pacemaker-like activity exhibited by control neurons was unaffected by the drug. These data demonstrate that the intrinsic plateau properties exhibited by DA neurons are responsible for the generation of phasic activity induced following blockade of apamin-sensitive Ca2+-activated K+ channels and provide further support for the involvement of an L-type Ca2+ conductance in mediating this type of activity.  相似文献   

7.
A model of rapid learning (active avoidance conditioning), using rats, is described which induces retention depending on the number of trials to which the animals are submitted. For 3 trials (double stimulation) adequately spaced, the memory trace lasts for 48 hr, whilst 6 trails induce a trace for 10 days. One single application of the double stimulation does not give any apparent retention in normal rats for 24 hr. This experimental fact is used to study and screen the activity of substances on the learning process. Animals treated with piracetam, pemoline, methamphetamin, strychnine, pyritinol and meclofenoxate before this single trial, display evidence of retention 24 hr later. Other substances, with known clinical CNS activites, eg, tranquillizers, analgesics, etc... show no positive effect on the mnesic trace.  相似文献   

8.
Dopamine neurons in midbrain coronal slices from adult rats (40-70 days old) discharged only in pacemaker-like mode. Irregular or bursting mode was never observed. In contrast, dopamine neurons in slices from immature rats (15-21 days old) exhibited not only pacemaker-like firing (53.4% of neurons), but also irregular and bursting patterns (28.3 and 18.3%, respectively). Glutamate and kainate increased the firing rate but failed to induce bursts in dopamine neurons from either adult or immature rats. N-Methyl-D-aspartate augmented the firing rate in all neurons from adult rats and produced a modest increase of bursts in only three out of 18 cells. In slices from immature rats, N-methyl-D-aspartate activated the discharge rate in all neurons and also induced bursts in 37 and 53% of pacemaker and irregular neurons, respectively, and increased the occurrence of spikes in bursts in 76% of spontaneously bursting neurons. The selective N-methyl-D-aspartate receptor antagonist (+/-)2-amino,5-phosphonopentanoic acid prevented N-methyl-D-aspartate-induced changes and also reduced spontaneous bursts, suggesting that bursting discharge is mediated by N-methyl-D-aspartate receptor activation. While pacemaker neurons from immature and from adult rats exhibited the same sensitivity to N-methyl-D-aspartate-induced stimulation of firing rate, spontaneously bursting neurons were more sensitive than pacemaker neurons from either immature or adult rats. The present study indicates that spontaneous bursting, dependent on N-methyl-D-aspartate receptor activation, is present, and may be induced, in dopamine neurons in slices from immature rats. Its absence from cells in slices from adult rats may reflect a reduced sensitivity of N-methyl-D-aspartate receptors on dopamine or the loss of the N-methyl-D-aspartate-activated burst generator.  相似文献   

9.
Leech neurons exposed to salines containing inorganic Ca(2+)-channel blockers generate rhythmic bursts of impulses. According to an earlier model, these blockers unmask persistent Na+ currents that generate plateau-like depolarizations, each triggering a burst of impulses. The resulting increase in intracellular Na+ activates an outward Na+/K+ pump current that contributes to burst termination. We tested this model by examining systematically the effects of six transition metal ions (Co2+, Ni2+, Mn2+, Cd2+, La3+, and Zn2+) on the electrical activity of neurons in isolated leech ganglia. Each ion induced bursting activity, but the amplitude, form, and persistence of bursting differed with the ion used and its concentration relative to Ca2+. All ions tested suppressed chemical synaptic transmission between identified motor neurons, consistent with block of voltage-dependent Ca2+ currents in these cells. In addition, a strong correlation between suppression of synaptic transmission and burst amplitudes was obtained. Finally, burst duration was increased and the rate of repolarization decreased in reduced K+ saline, as expected for pump-dependent repolarization. These results provide further support for the hypothesis that a novel form of oscillatory electrical activity driven by persistent Na+ currents and the Na+/K+ pump occurs in leech ganglia exposed to Ca(2+)-channel blockers.  相似文献   

10.
We have previously shown that strychnine mimics the cytoprotective properties of glycine in renal proximal tubule (RPT) suspensions exposed to antimycin A (AA). The aims of this study were to determine whether the cytoprotective properties of strychnine applied to various types of nephrotoxicants and to examine the temporal aspects of the cytoprotection of glycine and strychnine. Tubular release of LDH activity was used as a marker of cell death. Glycine (2 mM) or strychnine (1 mM) added 5 min prior to the toxicant decreased LDH release in rabbit RPT suspensions exposed to 25 microM tetrafluoroethyl-L-cysteine (TFEC), 10 microM HgCl2, 0.5 mM t-butyl hydroperoxide (TBHP), or 0.2 mM bromohydroquinone (BHQ) for 4 hr, or 2 mM sodium cyanide (NaCN) for 2 hr. The relative rank order of effectiveness of glycine and strychnine was NaCN = TFEC > BHQ > DCVC > TBHP > HgCl2. The temporal aspects of strychnine and glycine protection were examined by exposing RPT to either AA or TFEC for 1 or 3 hr, respectively, and then adding either 1 mM glycine or 1 mM strychnine. Glycine and strychnine decreased LDH release in AA-treated RPT at 1.25 and 2 hr and TFEC-treated RPT at 4 hr. In addition, when RPT exposed to AA or TFEC and treated with strychnine or glycine were washed at either 1 or 4 hr, protection was eliminated at later time points. When glycine was added to RPT treated with either PCBC, TFEC, or DCVC 5 min prior to or 30, 60, 120, and 180 min following toxicant addition, LDH release was reduced at all time points. These results demonstrate that strychnine and glycine protect RPT from a variety of diverse nephrotoxicants, strychnine and glycine do not need to be present at the time of toxic insult, strychnine and glycine cytoprotection is reversible, and strychnine and glycine act in the late phase of necrotic cell injury.  相似文献   

11.
We recorded multiunit neural activity in the granule cell layer of cerebellar folium Crus IIa in unrestrained rats. Seven- to 8-Hz oscillatory activity was seen during behavioral states in which the animal was immobile; any movement the animal made coincided with termination of the oscillations. However, nearly one-third of oscillatory episodes appeared to cease spontaneously, in the absence of any observable sensory input or movement. Oscillations were synchronized both within and between cerebellar hemispheres, demonstrating precise temporal coordination among multiple, bilateral levels of the somatosensory system. We interpret these data in the context of similar oscillations observed in other brain structures and suggest that the oscillations are an underlying dynamic property of the entire somatosensory network.  相似文献   

12.
Most electrical and ionic properties of anterior pituitary cells are common to all pituitary cell types; only gonadotropes exhibit a few cell specific features. Under basal conditions, the majority of pituitary cells in vitro, irrespective of their cell type, display spontaneous action potentials and [Ca2+]i transients that result from rhythmic Ca2+ entry through L-type Ca2+ channels. The main function of these action potentials is to maintain cells in a readily activable responsive state. We propose to call this state a 'pacemaker mode', since it persists in the absence of extrinsic stimulation. When challenged by hypothalamic releasing hormones, cells exhibit two distinct response patterns: amplification of pacemaker activity or shift to internal Ca2+ release mode. In the internal Ca2+ release mode, [Ca2+]i oscillations are not initiated by entry of external Ca2+, but by release of Ca2+ from intracellular stores. In somatotropes and corticotropes, GHRH or CRH triggers the pacemaker mode in silent cells and amplifies it in spontaneously active cells. In contrast, in gonadotropes GnRH activates the internal Ca2+ release mode in silent cells and switches already active cells from the pacemaker to the internal Ca2+ release mode. Interestingly, homologous normal and tumoral cells display the same type of activity in vitro, in the absence or presence of hypothalamic hormones. Pacemaker and internal Ca2+ release modes are likely to serve different purposes. Pacemaker activity allows long-lasting sequences of [Ca2+]i oscillations (and thus sustained periods of secretion) that stop under the influence of hypothalamic inhibitory peptides. In contrast, the time during which cells can maintain internal Ca2+ release mode depends upon the importance of intracellular Ca2+ stores. This mode is thus more adapted to trigger secretory peaks of large amplitude and short duration. On the basis of these observations, theoretical models of pituitary cell activity can be proposed.  相似文献   

13.
During lactation and parturition, magnocellular oxytocin (OT) neurons display a characteristic bursting electrical activity responsible for pulsatile OT release. We investigated this activity using hypothalamic organotypic slice cultures enriched in magnocellular OT neurons. As shown here, the neurons are functional and actively secrete amidated OT into the cultures. Intracellular recordings were made from 23 spontaneously bursting and 28 slow irregular neurons, all identified as oxytocinergic with biocytin and immunocytochemistry. The bursting electrical activity was similar to that described in vivo and was characterized by bursts of action potentials (20.1 +/- 4.3 Hz) lasting approximately 6 sec, over an irregular background activity. OT (0.1-1 microM), added to the medium, increased burst frequency, reducing interburst intervals by 70%. The peptide also triggered bursting in 27% of nonbursting neurons. These effects were mimicked by the oxytocin receptor (OTR) agonist [Thr4, Gly7]-OT and inhibited by the OTR antagonist desGly-NH2d(CH2)5[D-Tyr2,Thr4]OVT. Burst rhythmicity was independent of membrane potential. Hyperpolarization of the cells unmasked volleys of afferent EPSPs underlying the bursts, which were blocked by CNQX, an AMPA/kainate receptor antagonist. Our results reveal that OT neurons are part of a hypothalamic rhythmic network in which a glutamatergic input governs burst generation. OT neurons, in turn, exert a positive feedback on their afferent drive through the release of OT.  相似文献   

14.
Plant cell suspension cultures: some engineering considerations   总被引:1,自引:0,他引:1  
Higher plants are the source of a vast array of biochemicals which are used as drugs, pesticides, flavourings and fragrances. For some of these compounds, plant cell culture can provide a potential production alternative to traditional cultivation methods or chemical synthesis routes. Many systems have been patented and the last 20 years have seen considerable industrial and academic interest in the development of large scale cultures to produce pharmaceutically active, high value substances. However, the industrial application of plant cell suspension cultures has, to date, been limited. Commercialisation has essentially been impeded by economic feasibility, arising from both biological and engineering considerations. This paper reviews the commercial development of the technology to date and focuses on the impact of specific engineering-related factors, in particular, the shear sensitivity of plant cell suspension cultures. Evidence of sensitivity to hydrodynamic shear in bioreactors has generally been attributed to the physical characteristics of the suspended cells. Recent studies indicate that shear sensitivity may not be as important, in some cases, as initially anticipated.  相似文献   

15.
Mammalian spinal neuronal networks growing on arrays of photoetched electrodes in culture provide a highly stable system for the long-term monitoring of multichannel, spontaneous or evoked electrophysiological activity. In the absence of the homeostatic control mechanisms of the central nervous system, these networks show remarkable sensitivities to minute chemical changes and mimic some of the properties of sensory tissue. These sensitivities could be enhanced by receptor up-regulation and altered by the expression of unique receptors. The fault-tolerant spontaneous network activity is used as a dynamic platform on which large changes in activity signify detection of chemical substances. We present strategies for the expression of novel supersensitivities to foreign molecules via genetic engineering that involves the grafting of ligand binding cDNA onto truncated native receptor DNA and the subsequent expression of such chimeric receptors.  相似文献   

16.
Reactive oxygen species (ROS) and reactive metabolic intermediates generated from various chemical carcinogens are known to play an important role in cell damage and in the initiation and progression of carcinogenesis. Many radical scavengers, interestingly naturally occuring antioxidants have been found to be effective in inhibiting the induction of carcinogenesis by a wide variety of chemical carcinogens. Studies have also indicated that various spice principles form an important group as antioxidants. In the present study our goal was to investigate whether piperine an pungent principle of black and long peppers was able to inhibit or reduce the oxidative changes induced by chemical carcinogens in rat intestinal model. Carcinogenesis was initiated in intestinal lumen of male rats with 7,12,dimethyl benzanthracene, dimethyl amino-methyl azobenzene and 3-methyl cholenthrene. Oxidative alterations were assessed by determining thiobarbituric reactive substances, mainly malonaldehyde (as a measure of lipid peroxidation), thiol status and expression of gamma-GT and Na+-K+-ATPase activity in intestinal mucosa. Data indicated that carcinogens treatment induced GSH depletion with substantial increase in thiobarbituric reactive substances and enzyme activities. Piperine treatment with carcinogens resulted in inhibition of thiobarbituric reactive substances. It mediated a significant increase in the GSH levels and restoration in gamma-GT and Na+-K+-ATPase activity. The studies thus indicate a protective role of piperine against the oxidative alterations by carcinogens. It may be suggested that piperine modulates the oxidative changes by inhibiting lipid peroxidation and mediating enhanced synthesis or transport of GSH thereby replenishing thiol redox.  相似文献   

17.
Competition for postsynaptic targets during development is thought to be driven by differences in temporal patterns of neuronal activity. In the ferret visual system, retinal ganglion cells that are responsive either to the onset (On) or to the offset (Off) of light exhibit similar patterns of spontaneous bursting activity early in development but later develop different bursting rhythms during the period when their axonal arbors segregate to occupy spatially distinct regions in the dorsal lateral geniculate nucleus. Here, we demonstrate that GABAergic transmission plays an important, although not exclusive, role in regulating the bursting patterns of morphologically identified On and Off ganglion cells. During the first and second postnatal weeks, blocking GABAA receptors leads to a decrease in the bursting activity of all ganglion cells, suggesting that GABA potentiates activity at the early ages. Subsequently, during the period of On-Off segregation in the geniculate nucleus, GABA suppresses ganglion cell bursting activity. In particular, On ganglion cells show significantly higher bursting rates when GABAergic transmission is blocked, but the bursting rates of Off ganglion cells are not affected systematically. Thus, developmental differences in the bursting rates of On and Off ganglion cells emerge as GABA becomes inhibitory and as it consistently and more strongly inhibits On compared with Off ganglion cells. Because in many parts of the CNS GABAergic circuits appear early in development, our results also implicate a potentially important and possibly general role for local inhibitory interneurons in creating distinct temporal patterns of presynaptic activity that are specific to each developmental period.  相似文献   

18.
In this paper the authors present the antimicrobial and antifungical tests of some new 3-methylpyrimidine compounds. The test was performed using the diffusimetric method with rustlessteel cylinders based on the diffusion of the tested substances on the gelose surface. The comparative analysis of the obtained data leads to the following conclusions concerning the relation between structure and biological activity in the pyrimidine series: 1. The pyrimidinium ylides are less active comparatively with the corresponding salts. That means that the zwitter ionic structure did not favour the activity. 2. Comparative with the corresponding pyridazine(1,2-diazine) derivatives, the pyrimidine(1,3-diazine) compounds are more active. The increase of activity of the pyrimidine compounds could be attributed of the influence of the pyrimidine ring. 3. The most active pyrimidine compound which is tested is that one in which radical R is an amide group. 4. In the case when the radical R is a phenyl ring, the substitute from para position of benzoylic radical does not appear decisive towards activity, these affecting especially the selectivity.  相似文献   

19.
On the basis of experimental data we have developed a mathematical model of pacemaker activity in bursting neurons of snail Helix pomatia which includes a minimal model of membrane potential oscillation, spike-generating mechanism, voltage- and time-dependent inward calcium current, intracellular calcium ions, [Ca2+]in, their fast buffering and accumulation, stationary voltage-dependent [Ca2+]in-inhibited calcium current. A resulting model of bursting pacemaker activity reproduces all experimental phenomena which were mimicked on the minimal model for membrane potential oscillation including (a) the effect of polarizing current on bursting activity, (b) an increase of input resistance during depolarizing phase, (c) induced hyperpolarization, etc. This model demonstrates adaptation of bursting activity to both the polarizing current and changes in the stationary sodium or potassium conductances. The model also reproduces the behavior of the transmembrane ionic current at membrane potentials clamped in different phases of slow-wave development; the calculated current-voltage relationships of the model neuronal membrane using a slow ramp potential clamp demonstrate hysteresis properties. Relationships between the model of bursting activity and the properties if intact bursting neurons are discussed.  相似文献   

20.
CASE REPORT: An 18-year-old female who accidentally ingested strychnine developed chemical pancreatitis in addition to the classical clinical picture of strychnine poisoning. Many drugs or chemicals have been reported to be associated with pancreatitis; however, this paper provides us with the first evidence that acute pancreatitis may follow strychnine poisoning. The patient survived despite the development of seizures, lactic acidosis, rhabdomyolysis, and pulmonary infiltrates. Toxicology testing confirmed the presence of strychnine in blood (2.17 mg/L), gastric aspirate, and urine. Attention is drawn to the fact that survival can follow the ingestion of large doses of strychnine providing there is no delay in diagnosis and treatment. The pathophysiologic mechanism of chemical pancreatitis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号