首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Four Klebsiella pneumoniae isolates (LB1, LB2, LB3, and LB4) with increased antimicrobial resistance were obtained from the same patient. The four isolates were indistinguishable in biotype, plasmid content, lipopolysaccharide, and DNA analysis by pulse-field gel electrophoresis. Isolate LB1 made TEM-1 and SHV-1 beta-lactamases. Isolates LB2, LB3, and LB4 produced SHV-5 in addition to TEM-1 and SHV-1. MICs of cefoxitin, ceftazidime, and cefotaxime against LB1 were 4, 1, and 0.06 micrograms/ml, respectively. MICs of ceftazidime against K. pneumoniae LB2, LB3, and LB4 were > 256 micrograms/ml, and those of cefotaxime were 2, 4, and 64 micrograms/ml, respectively. MICs of cefoxitin against K. pneumoniae LB2 and LB3 were 4 micrograms/ml, but that against K. pneumoniae LB4 was 128 micrgrams/ml. K. pneumoniae LB4 could transfer resistance to ceftazidime and cefotaxime, but not that to cefoxitin, to Escherichia coli. Isolate LB4 and cefoxitin-resistant laboratory mutants lacked an outer membrane protein of about 35 kDa whose molecular mass, mode of isolation, resistance to proteases, and reaction with a porin-specific antiserum suggested that it was a porin. MICs of cefoxitin and cefotaxime reverted to 4 and 2 micrograms/ml, respectively, when isolate LB4 was transformed with a gene coding for the K. pneumoniae porin OmpK36. We conclude that the increased resistance to cefoxitin and expanded-spectrum cephalosporins of isolate LB4 was due to loss of a porin channel for antibiotic uptake.  相似文献   

2.
The activities of DU-6859a, levofloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against bite wound isolates were determined by the agar dilution method. DU-6859a was the most active compound (MICs, < or = 0.125 microg/ml) against all Pasteurella species, Staphylococcus aureus, and streptococci; anaerobes were susceptible to < or = 0.5 microg/ml, except fusobacteria, which were susceptible to < or = 2 microg/ml. Against aerobes, levofloxacin was more active than ofloxacin (MIC at which 90% of isolates are inhibited [MIC90], < or = 1.0 microg/ml for both) and sparfloxacin and ciprofloxacin were also active (MIC90s, < or = 0.25 and < 1 microg/ml, respectively).  相似文献   

3.
The antibacterial activity of levofloxacin was compared with those of ofloxacin and ciprofloxacin against bacterial isolates from patients with cancer. In general, levofloxacin was as active or was twofold more active than ofloxacin and was two- to fourfold less active than ciprofloxacin against most gram-negative pathogens. Against Pseudomonas aeruginosa, ciprofloxacin was the most active agent tested (MIC for 90% of isolates tested, 1.0 microgram/ml). Overall, all three agents had similar activities against gram-positive organisms and were moderately active against methicillin-susceptible Staphylococcus aureus and coagulase-negative staphylococci, Streptococcus species, and Enterococcus species.  相似文献   

4.
In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.  相似文献   

5.
The in vitro activity of the new fluoroquinolone CP-99,219 [7-(3-azabicyclo[3.1.0]hexyl)naphthyridone] was compared with those of four other quinolones against 541 gram-negative, 283 gram-positive, and 70 anaerobic bacterial isolates. CP-99,219 inhibited 90% of many isolates in the family Enterobacteriaceae at a concentration of < or = 0.25 micrograms/ml (range, < 0.008 to 1 microgram/ml), an activity comparable to those of tosufloxacin and sparfloxacin and two times greater than that of temafloxacin. Ninety percent of the Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Serratia marcescens isolates were inhibited by 0.5 to 2 micrograms of CP-99,219 per ml. CP-99,219 inhibited 90% of the Pseudomonas aeruginosa and Haemophilus influenzae isolates at 1 and 0.015 micrograms/ml, respectively. The compound inhibited methicillin-susceptible Staphylococcus aureus at 0.06 micrograms/ml, whereas a ciprofloxacin concentration of 1 microgram/ml was required to inhibit these organisms. CP-99,219 inhibited 90% of methicillin-resistant S. aureus isolates at a concentration of < or = 4 micrograms/ml, while ciprofloxacin and temafloxacin had MICs against these isolates of > 16 micrograms/ml. Streptococci were inhibited by < or = 0.25 micrograms/ml, an activity comparable to that of tosufloxacin. CP-99,219 was eight times more active than ciprofloxacin against Streptococcus pneumoniae. Bacteroides species were inhibited by CP-99,219 at a concentration of 2 micrograms/ml, whereas inhibition of these species required 4- and 16-microgram/ml concentrations of tosufloxacin and ciprofloxacin, respectively. The MBCs of CP-99,219 ranged from two to four times the MICs, and inoculum size had a minimal effect on MIC. CP-99,219 was active against P. aeruginosa at pH 5.5, with only a fourfold increase in MIC compared with values obtained at pH 7.5. The addition of up to 9 mM Mg(2+) increased the MIC range from 0.03 to 0.06 microgram/ml to 0.12 to 0.5 microgram/ml. In view of its excellent in vitro activity against both gram-positive and gram-negative bacteria, CP-99,219 merits further study to determine it's clinical pharmacologic properties and potential for therapeutic use.  相似文献   

6.
E-4695, (-)-7-[3-(R)-amino-2-(S)-methyl-1-azetidinyl]-1-cyclopropyl-1,4- dihydro-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid, is a new fluorinated naphthyridine with an azetidine moiety. The MICs of E-4695 at which 90% of the isolates were inhibited (MIC90s) were 0.06 to 0.5 microgram/ml for gram-positive cocci, including species of the genera Staphylococcus, Streptococcus, and Enterococcus, and the MIC90s against gram-negative pathogens such as members of the family Enterobacteriaceae (with the exception of Providencia spp. [MIC90, 8 micrograms/ml]) and Pseudomonas aeruginosa were 0.015 to 0.5 microgram/ml. E-4695 inhibited 90% of the Clostridium perfringens and Bacteroides fragilis isolates at 0.25 and 4 micrograms/ml, respectively. Against gram-positive cocci the potency of E-4695 was 2- to 8-fold higher than that of ciprofloxacin, 4- to 8-fold higher than that of ofloxacin, and 8- to 16-fold higher than that of fleroxacin. Against enteric bacteria and P. aeruginosa the potency of E-4695 was, in general, similar to that of ciprofloxacin and eightfold higher than those of ofloxacin and fleroxacin. E-4695 was four- and eightfold more potent than ciprofloxacin against C. perfringens and B. fragilis isolates, respectively. E-4695 and ciprofloxacin showed similar properties when the effects of pH or magnesium concentration were tested on them. E-4695 and ciprofloxacin had substantial reductions of activity only when pH decreased below 4.8. E-4695 and ciprofloxacin activities were not markedly affected by the presence of 5 or 10 mM Mg2+. The presence of serum and human urine at pH 7.2 decreased the activity of E-4695 between two- and fourfold. After an oral dose of 50 mg/kg of body weight, the maximum level in serum, the biological half-life, and the area under the concentration-time curve from 0 to 10 h for E-4695 were 13.2 microgram/ml, 3.3 h, and 45.6 microgram . h/ml, respectively. The area under the concentration-time curve from 0 to 4 h for ciprofloxacin was 2.3 microgram . h/ml at the same dose. Fifty-percent effective doses (ED50S) against Staphylococcus aureus HS-93 infections in mice were 4.5 mg/kg with E-4695 and 37.6 mg/kg with ciprofloxacin. Infection with Streptococcus pneumoniae 29206 was more effectively treated with E-4695 (ED50, 41,2 mg/kg) than with ciprofloxacin (ED50, 200 mg/kg). The ED50 of E-4695 for infections with Streptococcus pneumoniae 1625 was 132.2 mg/kg; ciprofloxacin was ineffective at 400 mg/kg against this strain. E-4695 was also more potent than ciprofloxacin in treatment of infections caused by gram-negative organisms such as Escherichia coli HM-42 (ED50S, 1.0 and 3.9 mg/kg, respectively). The ED50S of E-4695 and ciprofloxacin were 33.0 and 145.5 mg/kg against P. aeruginosa HS-116 and 9.6 and 18.9 mg/kg against P. aeruginosa B-120, respectively. The therapeutic efficacy of E-4695 may depend not only on its in vitro activity but also on its improved pharmacokinetic properties.  相似文献   

7.
NorA is a membrane-associated multidrug efflux protein that can decrease susceptibility to fluoroquinolones in Staphylococcus aureus. To determine the effect of NorA inhibition on the pharmacodynamics of fluoroquinolones, we evaluated the activities of levofloxacin, ciprofloxacin, and norfloxacin with and without various NorA inhibitors against three genetically related strains of S. aureus (SA 1199, the wild-type; SA 1199B, a NorA hyperproducer with a grlA mutation; and SA 1199-3, a strain that inducibly hyperproduces NorA) using susceptibility testing, time-kill curves, and postantibiotic effect (PAE) methods. Levofloxacin had the most potent activity against all three strains and was minimally affected by addition of NorA inhibitors. In contrast, reserpine, omeprazole, and lansoprazole produced 4-fold decreases in ciprofloxacin and norfloxacin MICs and MBCs for SA 1199 and 4- to 16-fold decreases for both SA 1199B and SA 1199-3. In time-kill experiments reserpine, omeprazole, or lansoprazole increased levofloxacin activity against SA 1199-3 alone by 2 log10 CFU/ml and increased norfloxacin and ciprofloxacin activities against all three strains by 0.5 to 4 log10 CFU/ml. Reserpine and omeprazole increased norfloxacin PAEs on SA 1199, SA 1199B, and SA 1199-3 from 0.9, 0.6, and 0.2 h to 2.5 to 4.5, 1.1 to 1.3, and 0.4 to 1.1 h, respectively; similar effects were observed with ciprofloxacin. Reserpine and omeprazole increased the levofloxacin PAE only on SA 1199B (from 1.6 to 5.0 and 3.1 h, respectively). In conclusion, the NorA inhibitors dramatically improved the activities of the more hydrophilic fluoroquinolones (norfloxacin and ciprofloxacin). These compounds may restore the activities of these fluoroquinolones against resistant strains of S. aureus or may potentially enhance their activities against sensitive strains.  相似文献   

8.
We determined the MICs of 63 quinolones against 14 selected reference and clinical strains of the Mycobacterium avium-Mycobacterium intracellulare complex. Sixty-one of the compounds were selected from the quinolone library at Parke-Davis, Ann Arbor, Mich., including N-1-tert-butyl-substituted agents. T 3761 and tosufloxacin were also tested. The activities of all 63 compounds were compared with those of ciprofloxacin and sparfloxacin. The results showed 45 of the quinolones to be active against the M. avium-M. intracellulare complex, with MICs at which 50% of the strains were inhibited (MIC50s) of less than 32 micrograms/ml. Twenty-four of these quinolones had activities equivalent to or greater than that of ciprofloxacin, and nine of them had activities equivalent to or greater than that of sparfloxacin. The most active compounds were the N-1-tert-butyl-substituted quinolones, PD 161315 and PD 161314, with MIC50s of 0.25 microgram/ml and MIC90s of 1 microgram/ml; comparable values for ciprofloxacin were 2 and 4 micrograms/ml, respectively, while for sparfloxacin they were 1 and 2 micrograms/ml, respectively. The next most active compounds, with MIC50s of 0.5 microgram/ml and MIC90s of 1 microgram/ml, were the N-1-cyclopropyl-substituted quinolones, PD 138926 and PD 158804. These values show that the tert-butyl substituent is at least as good as cyclopropyl in rendering high levels of antimycobacterial activity. However, none of the quinolones showed activity against ciprofloxacin-resistant laboratory-derived M. avium-M. intracellulare complex strains. A MULTICASE program-based structure-activity relationship analysis of the inhibitory activities of these 63 quinolones and 109 quinolones previously studied against the most resistant clinical strain of M. avium was also performed and led to the identification of two major biophores and two biophobes.  相似文献   

9.
We have tested the in vitro activities of eight fluoroquinolones against 160 Brucella melitensis strains. The most active was sitafloxacin (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 microg/ml). In decreasing order, the activities (MIC90s) of the rest of the tested fluoroquinolones were as follows: levofloxacin, 0.5 microg/ml; ciprofloxacin, trovafloxacin, and moxifloxacin, 1 microg/ml; and ofloxacin, grepafloxacin, and gatifloxacin, 2 microg/ml.  相似文献   

10.
T-3761, a new quinolone derivative, showed broad and potent antibacterial activity. Its MICs for 90% of the strains tested were 0.20 to 100 micrograms/ml against gram-positive bacteria, including members of the genera Staphylococcus, Streptococcus, and Enterococcus; 0.025 to 3.13 micrograms/ml against gram-negative bacteria, including members of the family Enterobacteriaceae and the genus Haemophilus; 0.05 to 50 micrograms/ml against glucose nonfermenters, including members of the genera Pseudomonas, Xanthomonas, Acinetobacter, Alcaligenes, and Moraxella; 0.025 micrograms/ml against Legionella spp.; and 6.25 to 25 micrograms/ml against anaerobes, including Bacteroides fragilis, Clostridium difficile, and Peptostreptococcus spp. The in vitro activity of T-3761 against these clinical isolates was comparable to or 2- to 32-fold greater than those of ofloxacin and norfloxacin and 2- to 16-fold less and 1- to 8-fold greater than those of ciprofloxacin and tosulfoxacin, respectively. When administered orally, T-3761 showed good efficacy in mice against systemic, pulmonary, and urinary tract infections with gram-positive and gram-negative bacteria, including quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa. The in vivo activity of T-3761 was comparable to or greater than those of ofloxacin, ciprofloxacin, norfloxacin, and tosufloxacin against most infection models in mice. The activities of T-3761 were lower than those of tosufloxacin against gram-positive bacterial systemic and pulmonary infections in mice but not against infections with methicillin-resistant Staphylococcus aureus. The activities of T-3761 against systemic quinolone-resistant Serratia marcescens and Pseudomonas aeruginosa infections in mice were 2- to 14-fold greater than those of the reference agents.  相似文献   

11.
Ciprofloxacin, 500 mg, was introduced as the first-line therapy for gonorrhea at St. Mary's Hospital, London, in 1989, when a surveillance program was initiated to detect the emergence of resistance. Isolates of Neisseria gonorrhoeae from consecutive patients attending the Jefferiss Wing, Genitourinary Medicine Clinic at St. Mary's Hospital, between 1989 and 1997 have been tested for susceptibility to ciprofloxacin by using an agar dilution breakpoint technique. Isolates considered potentially resistant (MIC, >0.12 microg/ml) were further characterized by determination of the MICs of ciprofloxacin, nalidixic acid, and penicillin, auxotyped and serotyped, and screened for mutations in the DNA gyrase gene, gyrA, and the topoisomerase IV gene, parC. A total of 4,875 isolates were tested. While the majority of isolates were highly susceptible (MIC, 0.12 microg/ml); all of these belonged to serogroup B, and NR/IB-1 was the most common auxotype/serovar class. The infections in 14 of the 18 patients were known to be acquired abroad, and 5 were known to result in therapeutic failure. The surveillance program has established that ciprofloxacin is still a highly effective antibiotic against N. gonorrhoeae in this population. However, it has identified a drift in susceptibility which may have resulted from increased usage of ciprofloxacin. High-level resistance has now emerged, although treatment failure is still uncommon.  相似文献   

12.
A 73-year-old male was admitted to our hospital because of detection of Shigella flexneri 2a from his stool. Antimicrobial treatment with levofloxacin (LVFX) was started, but could not eliminate the organism in the stool. In the examination of drug susceptibility, this strain was highly resistant to all new quinolones. The minimal inhibitory concentration of norfloxacin, ofloxacin and ciprofloxacin to this strain was 12.5 micrograms/ml, 6.25 micrograms/ml and 6.25 micrograms/ml, respectively. The dual mutations were detected in the codon 83 and 87 of the gyrA gene by sequencing the quinolone-resistance determining region (QRDR). There was, however, no significant difference between the intracellular uptake of ciprofloxacin in this strain and in the ciprofloxacin-sensitive strain. The amount of ciprofloxacin in this strain unchanged when carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was added. These results suggest that the advanced resistance in Shigella flexneri against new quinolones could be acquired by only this dual mutations without the change of the active efflux mechanism.  相似文献   

13.
PURPOSE: To determine the in vitro susceptibility of Mycobacterium chelonae isolates from corneal ulcers to various traditional and newly-developed antimicrobial agents, alone or in combination. METHODS: Fifteen strains of M. chelonae isolated from corneal ulcers were collected at the National Taiwan University Hospital from 1989 to 1993. Susceptibility to antimicrobial agents was tested by the broth microdilution method to determine the minimum inhibitory concentration (MIC). The antimicrobial effects of combinations of antimicrobial agents were assessed by the checkerboard titration method to determine the fractional inhibitory concentration (FIC) index. RESULTS: The MIC results showed that traditional antituberculous drugs had poor activity against M. chelonae. In the aminoglycoside group, tobramycin and amikacin had better activity than gentamicin. Among macrolides, clarithromycin was especially effective, with an MIC ranging from 0.125 to 1 microgram/ml. Among various beta-lactam antibiotics, imipenem was the only one to demonstrate good anti-mycobacterial activity. Of the quinolone group, ciprofloxacin was the most effective, with an MIC ranging from 0.5 to 16 micrograms/ml. Combination of an aminoglycoside with imipenem, ciprofloxacin or clarithromycin all showed antagonistic effect. CONCLUSIONS: The results suggested that amikacin, clarithromyicn, imipenem and ciprofloxacin had good in vitro antimicrobial activity against M. chelonae. However, no synergistic effect could be demonstrated for combinations of an aminoglycoside with other effective drugs.  相似文献   

14.
The in vitro activity of premafloxacin against 673 veterinary pathogens was evaluated. Premafloxacin was equivalent to ciprofloxacin, enrofloxacin, and danofloxacin in activity against the gram-negative bacilli but was much more active (MIC for 90% of the strains tested [MIC90], 0.015 to 0.25 microg/ml) than the comparison antimicrobial agents (MIC90, 0.13 to 16.0 microg/ml) against the staphylococci, streptococci, and anaerobes tested.  相似文献   

15.
The in vitro activity of Bay 12-8039, a new oral 8-methoxyquinolone, was compared to the activities of 11 other oral antimicrobial agents (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, azithromycin, clarithromycin, amoxicillin clavulanate, penicillin, cefuroxime, cefpodoxime, and doxycycline) against 250 aerobic and 140 anaerobic bacteria recently isolated from animal and human bite wound infections. Bay 12-8039 was active against all aerobic isolates, both gram-positive and gram-negative isolates, at < or = 1.0 microg/ml (MICs at which 90% of isolates are inhibited [MIC90s < or = 0.25 microg/ml) and was active against most anaerobes at < or = 0.5 microg/ml; the exceptions were Fusobacterium nucleatum and other Fusobacterium species (MIC90s, > or = 4.0 microg/ml) and one strain of Prevotella loeschii (MICs, 2.0 microg/ml). In comparison, the other quinolones tested had similar in vitro activities against the aerobic strains but were less active against the anaerobes, including peptostreptococci, Porphyromonas species, and Prevotella species. The fusobacteria were relatively resistant to all the antimicrobial agents tested except penicillin G (one penicillinase-producing strain of F. nucleatum was found) and amoxicillin clavulanate.  相似文献   

16.
The in vitro antimicrobial activities of AM-1155, a new fluoroquinolone, tosufloxacin and fleroxacin were tested against 55 clinical isolates of Neisseria gonorrhoeae using the agar dilution method. In our previous study, all the strains had been examined for mutations in the region corresponding to the quinolone-resistance determining region of the Escherichia coli gyrA gene and the analogous region of the parC gene, and tested for susceptibility to ciprofloxacin. In this study, the 55 isolates of N. gonorrhoeae were assigned to one of three categories based on the presence or absence of alterations in GyrA and ParC. In each category, the antimicrobial activity of AM-1155 against the isolates was compared with those of tosufloxacin and fleroxacin. The MICs of AM-1155 for 11 highly fluoroquinolone-resistant isolates with alterations in both GyrA and ParC ranged from 0.06 to 1.0 microgram/ml. The MICs inhibiting 50% (MIC50) and 90% (MIC90) of these isolates were 0.125 and 1.0 microgram/ml, respectively. The MICs of AM-1155 for 20 moderately fluoroquinolone-resistant isolates with alterations only in GyrA ranged from 0.03 to 0.25 microgram/ml (MIC50, 0.06 microgram/ml; MIC90m, 0.125 microgram/ml). The MICs of AM-1155 for 24 of the quinolone-susceptible isolates without alterations in either GyrA or ParC ranged from 0.004 to 0.03 microgram/ml (MIC50, 0.008 microgram/ml. MIC90, 0.015 microgram/ml). There were significant differences between the MIC distribution of AM-1155 and each corresponding MIC distribution of tosufloxacin and fleroxacin in these three categories to which the 55 isolates were assigned (p < 0.05). Based on the MIC90S of the tested fluoroquinolones, AM-1155 was two- and eightfold more active against the highly fluoroquinolone-resistant isolates than tosufloxacin and fleroxacin, respectively. Against the moderately fluoroquinolone-resistant isolates, AM-1155 was four- and sixteenfold more active than tosufloxacin and fleroxacin, respectively. Against the quinolone-susceptible strains, AM-1155 was also two- to fourfold more active than the other fluoroquinolones. Overall, AM-1155 exhibited more potent in vitro activity against both quinolone-resistant and quinolone-susceptible isolates of N. gonorrhoeae than tosufloxacin and fleroxacin. In ciprofloxacin treatment failures of gonorrhea at single doses of 500 mg. MICs for the causative organisms have ranged from 1.0 to 16.0 micrograms/ml. The MICs of AM-1155 for the isolates harboring quinolone resistance-associated genetic alterations, including strains exhibiting ciprofloxacin MICs of 2.0 and 8.0 micrograms/ml, still ranged from 0.03 to 1.0 microgram/mL A single-dose study in humans has demonstrated higher peak serum concentrations and longer half-lives of AM-1155, resulting in the AUC0-00 values of AM-1155, which are threefold greater than those of ciprofloxacin at the single doses of 400 and 600 mg. Because of its potent in vitro antimicrobial activity and advantageous pharmacokinetic behavior, AM-1155 may be a clinically useful agent for treating gonorrhea including that caused by quinolone-resistant strains.  相似文献   

17.
BACKGROUND: Infections caused by Streptococcus pneumoniae continue to be a significant cause of mortality and morbidity in humans. Diseases caused by multi-resistant pneumococci are increasing rapidly worldwide. The fluoroquinolones have been widely used clinically to treat infectious diseases. The results of a study here on the five fluoroquinolones susceptibilities of S. pneumoniae are reported from the Taichung Veterans General Hospital. METHODS: Minimum inhibitory concentrations (MICs) of five quinolones (enoxacin, norfloxacin, ofloxacin, levofloxacin and ciprofloxacin) were determined for 106 strains of S. pneumoniae. All MICs were determined by the agar dilution method utilizing Mueller-Hinton agar supplemented with 5% sheep blood. RESULTS: MIC90 of levofloxacin was 1 microgram/ ml, and was unaffected by penicillin-susceptibility. MIC90 of ofloxacin and that of ciprofloxacin were 2 and 4 micrograms/ml, respectively, with 90.6% sensitive to ofloxacin. MIC90 of enoxacin and that of norfloxacin were higher than other compounds. CONCLUSIONS: The in vitro activity of levofloxacin is twice that of ofloxacin, 4-fold of ciprofloxacin, 16-fold of norfloxacin, and 64-fold of enoxacin. MICs of these five quinolones were unaffected by penicillin-susceptibility. The antibacterial activity of levofloxacin was better than that of ofloxacin and ciprofloxacin, norfloxacin, or enoxacin against S. pneumoniae.  相似文献   

18.
The in vitro activities of eight quinolones against 115 coryneform bacteria (20 Corynebacterium jeikeium, 15 Corynebacterium minutissimum, 15 Corynebacterium striatum, 25 Corynebacterium urealyticum, 10 Corynebacterium xerosis, 10 Corynebacterium group ANF-1, 10 Corynebacterium group 12, and 10 Listeria monocytogenes) were determined. The MICs of ciprofloxacin, ofloxacin, and sparfloxacin for 90% of C. jeikeium, C. urealyticum, and C. xerosis isolates tested were > 16 micrograms/ml. Those of BAY Y 3118 and clinafloxacin against these species were 0.5 and 1 to 2 micrograms/ml, respectively. The MICs for 90% of all 115 strains tested were 0.5 microgram/ml for BAY Y 3118, 1 microgram/ml for clinafloxacin, 2 micrograms/ml for E-5068, 4 micrograms/ml for E-5065, and > 16 micrograms/ml for ciprofloxacin, ofloxacin, sparfloxacin, and E-4868.  相似文献   

19.
Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 microg/ml for erythromycin-susceptible strains (MICs, < or =0.25 microg/ml) and 0.25 microg/ml for erythromycin-resistant strains (MICs, > or =1.0 microg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 microg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were < or =0.125 microg/ml. The MICs of pristinamycin for all strains were < or =1.0 microg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 microg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at < or =1.0 microg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.  相似文献   

20.
The clinical and bacteriologic efficacy of topically applied ciprofloxacin was studied in 60 patients with chronic suppurative otitis media. Two hundred fifty and 125 microg/ml concentrations of ciprofloxacin solutions were given to two groups of patients. The duration of therapy was determined according to the clinical cure at follow-up. More than 21 days of therapy was not needed in any patient. The clinical cure rate with 250 microg/ml ciprofloxacin was 78.1% at 14 days and with 125 microg/ml it was 83.3%. However, a 100% clinical cure rate and complete bacteriologic eradication was obtained in 21 days in both groups. In each group only one patient had otomycosis by the fourteenth day of therapy, although ear discharge had ceased. It was concluded that 125 microg/ml ciprofloxacin could be applied as successfully as 250 microg/ml, and the duration of therapy had to be at least 14 days. This new dosage regimen can be adopted as an optimal dosage for ototopical application of ciprofloxacin in chronic suppurative otitis media. It will also obviously decrease the expense of therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号