首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of ruthenium(III) (Ru(III)) and osmium(VIII) (Os(VIII)) catalysed oxidation of neuroleptic drug, gabapentin (GBP) by diperiodatoargentate(III) (DPA) in alkaline medium at 27 °C and a constant ionic strength of 0.60 mol dm?3 was studied spectrophotometrically. The oxidation products in both the cases are 1-(hydroxymethyl) cyclohexane acetic acid and Ag(I). The stoichiometry is the same in both the catalysed reactions i.e. [gabapentin]:[DPA] = 1:1. The reaction is of first order in Os(VIII)/Ru(III) and [DPA] and has less than unit order in both [GBP] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Os(VIII)/Ru(III)-gabapentin complex, which further reacts with one mole of monoperiodatoargentate(III) (MPA) species in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectroscopic studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (K c) was also calculated for both catalysed reactions at different temperatures. From the plots of log K c versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII)>Ru(III). The probable active species of catalyst and oxidant have been identified.  相似文献   

2.

Abstract  

The kinetics of osmium(VIII) (Os(VIII)) and ruthenium(III) (Ru(III)) catalysed oxidation of l-valine (l-val) by diperiodatoargentate(III) (DPA) in aqueous alkaline medium at 25 °C and a constant ionic strength of 0.006 mol dm−3 was studied spectrophotometrically. The stoichiometry is the same in both the catalysed reactions, i.e., [l-val]:[DPA] = 1:1. The reaction is of first order in [Os(VIII)], [Ru(III)], and [DPA] and has less than unit order in [l-val] and negative fractional order in [OH]. Added periodate had no effect on rate of reaction. The products were identified by spot test and characterized by spectral studies. The catalytic constant (K C) was also calculated for both catalysed reactions at different temperatures. The activation parameters with respect to slow step of the mechanisms were computed and discussed and thermodynamic quantities were also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII) > Ru(III). The probable active species of catalyst and oxidant have been identified.  相似文献   

3.
The kinetics of osmium (VIII) catalyzed oxidation of DL-methionine by hexacyanoferrate(III) (HCF) in aqueous alkaline medium at a constant ionic strength of 0.50 mol dm?3 was studied spectrophoto-metrically. The reaction between hexacyanoferrate(III) and DL-methionine in alkaline medium exhibits 2:1 stoichiometry (2HCF:DL-methionine). The reaction is of first order each in [HCF] and [Os(VIII)], less than unit order in [alkali] and zero order for [DL-methionine]. The decrease in dielectric constant of the medium increases the rate of the reaction. The added products have no effect on the rate of reaction. The main products were identified by spot test. A free radical mechanism has been proposed. In a prior equilibrium step Os(VIII) binds to OH? species to form a hydroxide species and reacts with [Fe(CN)6]3? in slow step to form an intermediate species(C1). This reacts with a molecule of DL-methionine in a fast step to give the sulfur radical cation of methionine and yields the sulfoxide product by reacting with another molecule of [Fe(CN)6]3?. The rate constant of the slow step of the mechanism is calculated. The activation parameters with respect to slow step of the mechanism are evaluated and discussed.  相似文献   

4.
Abstract The kinetics of osmium(VIII) and ruthenium(III) catalysed oxidation of l-lysine (l-lys) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.15 mol dm−3 was studied spectrophotometrically. The reaction between l-lys and DPC in alkaline medium exhibits 1:2 stoichiometry in both catalysed reaction (l-lys: DPC). The reaction is first order in [DPC] and has less than unit order both in [l-lys] and [alkali]. Increase in periodate concentration decreases the rate. Intervention of free radicals was observed in the reaction. The main products were identified by spot test, IR and GC-MS studies. Probable mechanisms are proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. It has been observed that the catalytic efficiency for the present reaction is in the order of Os(VIII) > Ru(III). The active species of catalyst and oxidant have been identified. Graphical Abstract The kinetic and mechanistic investigations of the reaction between DPC and l-lysine has been studied in presence of microamounts of ruthenium(III) and osmium(VIII) in alkaline medium. The monoperiodatoargentate(III), [Ru(H2O)5OH]2+ and [OsO4(OH)2]2− are considered as the active species of oxidant, DPC, ruthenium(III) and osmium(VIII) respectively.   相似文献   

5.
Kinetics of Ruthenium(III) [Ru(III)] chloride catalyzed oxidation of valine (Val) has been studied by N-bromophthalimide (NBP) in the acidic medium at 35 °C. The reaction rate follows first-order and zero-order dependence with respect to [NBP] and [Val]. First-order kinetics was observed for Ru(III) chloride at low range of concentrations and tending towards zero-order at higher concentrations. A negative effect was observed for [H+] and [phthalimide], while a positive effect was observed for [Cl?] on the reaction rate. Hg(OAc)2, ionic strength (I), and dielectric constant (D) of the medium did not change significantly the reaction rate. The rate constants as a function of temperature (298–318 K) were used to calculate activation parameters of the oxidation of Val by NBP. A plausible mechanism was proposed to explain the results of kinetic studies, reaction stoichiometry and product analysis.  相似文献   

6.
The present paper deals with the kinetics and mechanism of Ru(III)-catalyzed oxidation of paracetamol by chloramine-T (CAT) in aqueous perchloric acid medium at 303 K. The experimental result shows a first order dependence on paracetamol at its low concentrations, but tending towards zeroth order at its higher concentrations. The reactions follow a first order rate dependence with respect to oxidant [CAT] and [Ru(III)]. The reaction showed negative fractional-order dependence on the rate for [H+] and p-toluenesulphonamide. Variation in [Cl?] and ionic strength of the medium did not bring about any significant change on the rate of reaction. The decrease in the reaction rate with decrease in the dielectric constant of the medium was observed in the oxidation of paracetamol. Kinetic and equivalence studies together with product analysis, observed effect of dielectric constant of the medium on the rate of reaction and activation parameters furnished a basis for the formation of a common reaction mechanism for the Ru(III)-catalyzed oxidation of paracetamol by CAT in the acidic medium.  相似文献   

7.
The kinetics and mechanism of ruthenium(III) catalyzed oxidation of dl-methionine by alkaline hexacyanoferrate(III) (HCF(III)) in an alkaline medium were studied spectrophotometrically at 30±0.1°C. The reaction was first-order-dependent each on [HCF(III)] and [ruthenium(III)] and fractional-order-dependent on [alkali]. The rate of the reaction was found to be decreased with the increase in [methionine]. The main product of oxidation was methionine sulfone nitrile (3-(methylsulfonyl)propanenitrile) and it was identified and confirmed by FT-IR and mass spectral studies. Further, no effect of added reaction product was observed. A plausible mechanism was proposed involving complexation between methionine and ruthenium(III) species, [Ru(H2O)5OH]2+. Thermodynamic parameters for the reaction, E a and Δ S #, were computed using linear least squares method and are found to be 65.83±1.03 kJ/mol and?249.58±3.35 J/K mol, respectively.

  相似文献   

8.
The kinetics and mechanism of oxidative decolorisation of Eriochrome Black T (EBT) with sodium N‐chloro‐p‐toluenesulfonamide or Chloramine‐T (CAT), catalysed by osmium tetroxide [Os(VIII)] in alkaline medium and uncatalysed in acid medium, have been spectrophotometrically investigated at 303 K. The reaction exhibited a first‐order dependence of rate on [CAT]0 and [EBT]0 in both media, and also with respect to [H+]. The order with respect to [OH] and [Os(VIII)] was fractional. Activation parameters were deduced. It was observed that the uncatalysed decolorisation reaction was ca. eightfold faster in acid medium in comparison with alkaline medium, while the Os(VIII)‐catalysed reaction was ca. sevenfold faster than the uncatalysed reaction. Mechanisms and rate laws were determined. The chemical oxygen demand of Eriochrome Black T dye was also determined. Importantly, the developed oxidative decolorisation method is simple, efficient, inexpensive, requires less time, and is environmentally benign. Hence, it can be adapted for treating Eriochrome Black T present in industrial and laboratory wastewater.  相似文献   

9.
Fe (III)-loaded chitosan (CS) hollow fibers (CS-Fe (III) HF) were successfully prepared according to the dry-wet spinning technique. The CS-Fe (III) HFs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA). Removal of pentavalent arsenic was studied through biosorption on CS-Fe (III) HF adsorptive membranes. The response surface methodology (RSM) was applied to investigate the influence of the main operating parameters such as contact time, pH, initial As (V) concentration and HFs dosage on the adsorption capacity of As (V). From the Pareto analysis, pH, [As (V)]o, [CS-Fe (III) HF membranes] and squared effect of [As(V)]o were found to produce the largest effect on biosorption of As (V). Kinetic studies showed that the pseudo-second-order kinetic model provides the best correlation to the experimental results. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 3,703 μg g?1. A laboratory scale glass membrane module consisting of three CS-Fe(III) HFs has also been prepared and tested for biosorption of As (V) at a real scale. Permeability of As (V) ions through the CS-Fe (III) HF membranes was 0.145 μmol m?2 h?1 bar ?1.  相似文献   

10.
The extraction behavior of rare earth (RE) elements using N,N,N′,N′-tetraoctyl diglycolamide (TODGA) in an ionic liquid (IL) system was investigated by slope analyses. Metallic salts of Pr(III), Nd(III), and Dy(III) with bis(trifluoromethylsulfonyl)amide (TFSA) were synthesized and studied for their extraction mechanism. The selected concentration of TODGA was diluted with triethylpentylphosphonium bis(trifluoromethylsulfonyl)amide ([P2225][TFSA]) to prepare an extracting phase for the slope analyses. The stoichiometry of RE(III) was determined in order to estimate the extracted species. Furthermore, the complexation state of the extracted species was evaluated by spectroscopic analyses, including Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. The FT-IR and Raman spectra were estimated using density functional theory (DFT) calculations. Thorough analysis of the FT-IR spectrum was carried out in order to assign the TODGA group that mainly coordinated the metal ion. The solvation of the [TFSA]? anion in the coordination sphere of [Nd(TODGA)(2–3)]3+ was investigated by Raman spectroscopic analysis. The coordination ability of TODGA was investigated from the peak shift of the hypersensitive transition (4I9/22G7/2) in UV–Vis spectroscopic measurements. From electrochemical analysis, the extracted [Nd(TODGA)3]3+ complex in [P2225][TFSA] was found to be reduced as per the following reaction: [Nd(TODGA)3]3+ + 3e? → Nd(0) + 3[TODGA] at ?3.0 V, and the diffusion coefficient of [Nd(TODGA)3]3+ was calculated to be 1.6 × 10?11 m2 s?1 at 373 K. The direct electrodeposition of the extracted [Nd(TODGA)3]3+ in [P2225][TFSA] at 373 K allowed us to conclude that the middle layer of Nd electrodeposits was the metallic state, while a part of the top surface was the oxidation state by XPS analysis.  相似文献   

11.
ABSTRACT

NMR( Nuclear Magnetic Resonance ) measurements were car ried out to study the molecular movement of CMPO and La(III)(NO3) 3? CMPO complex and the ligand-exchange reaction for Eu(III) and Gd(III)-CMPO systems. From the 13C relaxation time measurement of La(NO3) 3 3CMPO it was found that the T1 value for the isobutyl CH and CH2 carbons and the carbonyl carbon became considerably shorter on complexation, indicating that the carbonyl group participates in the bonding between CMPO and La3+ ion as well as the phosphoryl group. The numbers of CMPO molecules coordinated to Eu3+ and Gd3+ ions in CDCl3 solution were estimated to be 3 and 2, respectively, in the presence of excess CMPO. The activation parameters for the ligand-exchange reaction were evaluated to be ΔH* = 37.8±1.9[kJ/mol],ΔS* = -59.9±6.5[J/molk? K] and ΔH* = 41.3±1.6[kJ/mol], ΔS* = -44.1±5.3[J/mol-K] for Eu(III)-CMPO and Gd(III)-CMPO systems, respectively. The independence of the exchange rate constants on the concentration of CMPO indicates that these ligand-exchange reactions seem to proceed through either a dissociative ( D ) mechanism or an interchange dissociative ( Id ) mechanism characterized by a stability constant of outer-sphere complex( KQ ) ≥ 100.  相似文献   

12.
A linear sweep anodic stripping voltammetric method using a carbon nanotube–gold nanoparticle-modified vibrating screen printed electrode for the determination of arsenic(III) is reported. The experiments were conducted with a 0.1 mol L?1 solution of H2SO4 in order to estimate the electrode area related to gold oxide formation. The results showed a clear reduction peak at approximately +0.85 V corresponding to the reduction of the gold surface oxide with a superficial area of 0.089 cm2. A vibrating motor was attached to the screen printed electrode to create a portable and autonomous system with enhanced mass transfer. The repeatability of the measurements was 2.4 % (n = 10) at the level of 0.5 mg L?1 of arsenic(III) under the best instrumental operating conditions. The peak current was linearly dependent on the arsenic(III) concentration, thus allowing the construction of a linear analytical curve in the range from 10 to 550 μg L?1 with the equation: ?Ip (μA) = 0.05 + 134.59 [As(III) (μg L?1)], R2 = 0.99. The obtained detection and quantification limits were 0.5 (3 SD) and 1.5 (10 SD) μg L?1, respectively, using 120 s as the deposition time. It was shown that Cu(II) does not interfere in the detection of As(III) using the proposed method.  相似文献   

13.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

14.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

15.
Abstract

Electro‐oxidation of Ce(III) to Ce(IV) in nitric acid media at different anode materials with high oxygen evolution overpotential was carried out. Ce(IV) nitrato complexes were adsorbed on a novel resin, based on porous silica beads with immobilized polystyrene/DVB copolymer, that was impregnated with tri‐n‐butyl phosphate (TBP). Under the studied conditions, Ce(IV) sorption increased with increasing nitric acid concentration (0.5–6 mol · dm?3). Oxidation of sorbent by adsorbed Ce(IV) species resulting in Ce(III) release to the solution was observed and thoroughly evaluated. In spite of problems with TBP leakage (12%), column separation of pure Ce(IV) from Y(III) and La(III) was achieved in 6 mol · dm?3 HNO3 at 288 K. Ce(IV) breakthrough capacity was 0.48 mol · kg?1‐TBP. Column regeneration with 0.1 mol · dm?3 nitric acid yielded Ce solution with purity higher than 99.99 wt.% with respect to La and Y impurities.  相似文献   

16.
Aliquat-336-based strongly hydrophobic ionic liquid, tri-n-octylmethylammonium diglycolamate ([A336]+[DGA]?), was prepared and impregnated in Amberlite XAD-7 (abbreviated as [A336]+[DGA]?/XAD-7) for studying the extraction behavior of Am(III) and Eu(III) from nitric acid medium. The distribution ratio of Am(III) and Eu(III) in [A336]+[DGA]?/XAD-7 decreased with an increase in the concentration of nitric acid and the mechanism of trivalent metal ion extraction in the resin phase was elucidated. The uptake of Am(III) and Eu(III) in [A336]+[DGA]?/XAD-7 followed a second order and from the Langmuir adsorption model the apparent europium extraction capacity was determined. The conditions needed for efficient separation of Am(III) from Eu(III) was optimized.  相似文献   

17.
Abstract

The kinetics of the forward and backward extraction of the title process have been investigated using a Lewis cell operated at 3 Hz and flux or (F) – method of data treatment. The dependences of (F) in the forward extraction on [Fe3+], [H2A2](o), pH, and [HSO4 ?] are 1, 0.5, 1, and ?1, respectively. The value of the forward extraction rate constant (k f ) has been estimated to be 10?7.37 kmol3/2 m?7/2 s?1. The analysis of the experimentally found flux equation gives the following simple equation: F f =100.13 [FeHSO4 2+] [A?], on considering the monomeric model of BTMPPA and the stability constants of Fe(III)‐HSO4 ? complexes. This indicates the following elementary reaction occurring in the aqueous film of the interface as rate determining: [FeHSO4]2++A?→[FeHSO4.A]+. The very high activation energy of 91 kJ mol?1 supports this chemical reaction step as rate-determining. The negative value of the entropy change of activation (?94 J mol?1 K?1) indicates that the slow chemical reaction step occurs via the SN2 mechanism.

The backward extraction rate can be expressed by the equation: F b =10?5.13 [[FeHSO4A2]](o) [H+] [H2A2](o) ?0.5. An analysis of this equation leads to the following chemical reaction step as rate-determining: [FeHSO4A2](int)→[FeHSO4A]+A(i) ?. However, the activation energy of 24 kJ mol?1 suggests that the backward extraction process is intermediate controlled with greater contribution of the diffusion of one or the other species as a slow process. The equilibrium constant obtained from the rate study matches well with that obtained from the equilibrium study.  相似文献   

18.
Tris(N-phenyldithiocarbamato) ruthenium(III) complexes, [Ru(L1)3] (1); tris(N-(4-methylphenyl)dithiocarbamato)) ruthenium(III), [Ru(L2)3] (2); and tris(N-(4-methoxyphenyl)dithiocarbamato)) ruthenium(III), [Ru(L3)3] (3) were synthesized and characterized by elemental analysis, thermogravimetric analysis, FTIR, UV–VIS and NMR spectroscopy. TGA analyses show major degradation of all complexes in the range 120–350°C, leading to the formation of residual weight corresponding to ruthenium (III) sulfides. The 1H-NMR spectra of the ligands and complexes are in agreement with the proposed structures. FTIR studies confirmed that the ligands coordinate the Ru3+ ion in a bidentate chelating mode. The complexes were thermolysed at 180°C to prepare hexadecylamine-capped Ru2S3 nanoparticles. Powder X-ray diffraction patterns revealed the formation of hexagonal-phase Ru2S3 nanoparticles with average crystallite sizes ranging from 8.3 to 9.5?nm. TEM images showed the crystalline clusters with shapes ranging from square to hexagonal, while SEM images elucidated that the particles were agglomerated. Energy-dispersive X-ray spectra confirmed the presents of Ru2S3 nanoparticles.  相似文献   

19.
The products of hydrothermal reactions of kaolinite at 300 °C and 1000 bars were studied in KOH solutions covering an OH? concentration, [OH?], of 1 M to 3.5 M. XRD patterns indicated a notable influence of the [OH?] on the reaction. At [OH]  3 M, the only stable phase was muscovite/illite. The content of muscovite/illite was calculated from the analysis of the diagnostic 060 reflections of kaolinite and muscovite/illite. The results showed a linear dependence of kaolinite and muscovite/illite contents with [OH?]. 27Al MAS NMR spectroscopy revealed the formation of small nuclei of K-F zeolite at high [OH?]. Finally, modelling of the 29Si MAS NMR spectra indicated that the Si/Al ratio of the muscovite/illite formed was very close to that of muscovite, at least in the mineral formed at low [OH?]. In good agreement with the XRD data, the quantification of the reaction products by 29Si MAS NMR indicated a linear decrease of the kaolinite content with increasing OH? concentration.  相似文献   

20.
To extract iridium(III), various physicochemical parameters were studied. 2-Octylaminopyridine was used for the extraction of iridium(III) from acetate medium at 8.5 pH. Quantitative extraction of iridium(III) was achieved via ion-pair formation of cation [2-OAPH+] and anion [Ir(CH3COO)4]?. The stripping of iridium(III)-laden organic phase was carried out 2 M HCl (3 × 10 mL) . The stoichiometry of the extracted ion–pair complex was found to be 1:4:1 (metal: acetate: extractant). The extracted species [2-OAPH+. Ir(CH3COO)4?] is assumed to be an ion association product of [Ir(CH3COO)4] ? and [2-OAPH]+. The proposed method was successfully used in the separation of iridium(III) from binary and ternary mixtures. Analysis of various alloy samples was also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号