首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In the category of memory‐type control charts, progressive mean control chart was proposed recently, for monitoring the process location. Here we show, through the derivation, that the plotting statistic for the progressive mean control chart becomes a special case of exponentially weighted moving average when the sensitivity parameter becomes reciprocal of the sample number. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
    
We propose a new multivariate CUSUM control chart, which is based on self adaption of its reference value according to the information from current process readings, to quickly detect the multivariate process mean shifts. By specifying the minimum magnitude of the process mean shift in terms of its non‐centrality parameter, our proposed control chart can achieve an overall performance for detecting a particular range of shifts. This adaptive feature of our method is based on two EWMA operators to estimate the current process mean level and make the detection at each step be approximately optimal. Moreover, we compare our chart with the conventional multivariate CUSUM chart. The advantages of our control chart detection for range shifts over the existing charts are greatly improved. The Markovian chain method, through which the average run length can be computed, is also presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
    
The number of studies about control charts proposed to monitor profiles, where the quality of a process/product is expressed as function of response and explanatory variable(s), has been increasing in recent years. However, most authors assume that the in‐control parameter values are known in phase II analysis and the error terms are normally distributed. These assumptions are rarely satisfied in practice. In this study, the performance of EWMA‐R, EWMA‐3, and EWMA‐3(d2) methods for monitoring simple linear profiles is examined via simulation where the in‐control parameters are estimated and innovations have a Student's t distribution or gamma distribution. Instead of the average run length (ARL) and the standard deviation of run length, we used average and standard deviation of the ARL as performance measures in order to capture the sampling variation among different practitioners. It is seen that the estimation effect becomes more severe when the number of phase I profiles used in estimation decreases, as expected, and as the distribution deviates from normality to a greater extent. Besides, although the average ARL values get closer to the desired values as the amount of phase I data increases, their standard deviations remain far away from the acceptable level indicating a high practitioner‐to‐practitioner variability.  相似文献   

4.
    
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
    
Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) charts are famous statistical tools, to handle special causes and to bring the process back in statistical control. Shewhart charts are useful to detect large shifts, whereas EWMA and CUSUM are more sensitive for small to moderate shifts. In this study, we propose a new control chart, named mixed CUSUM‐EWMA chart, which is used to monitor the location of a process. The performance of the proposed mixed CUSUM‐EWMA control chart is measured through the average run length, extra quadratic loss, relative average run length, and a performance comparison index study. Comparisons are made with some existing charts from the literature. An example with real data is also given for practical considerations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
    
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been widely accepted because of their fantastic speed in identifying small‐to‐moderate unusual variations in the process parameter(s). Recently, a new CUSUM chart has been proposed that uses the EWMA statistic, called the CS‐EWMA chart, for monitoring the process variability. On similar lines, in order to further improve the detection ability of the CS‐EWMA chart, we propose a CUSUM chart using the generally weighted moving average (GWMA) statistic, named the GWMA‐CUSUM chart, for monitoring the process dispersion. Monte Carlo simulations are used to compute the run length profiles of the GWMA‐CUSUM chart. On the basis of the run length comparisons, it turns out that the GWMA‐CUSUM chart outperforms the CUSUM and CS‐EWMA charts when identifying small variations in the process variability. A simulated dataset is also used to explain the working and implementation of the CS‐EWMA and GWMA‐CUSUM charts.  相似文献   

8.
    
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
    
Monitoring changes in the Weibull mean and variance simultaneously is of interest in quality control. The mean and variance of a Weibull process are determined by its shape and scale parameters. Most studies are focused on monitoring the Weibull scale parameter with fixed shape parameter or the Weibull shape parameter with fixed scale parameter. In this paper, we propose an exponentially weighted moving average chart based on the likelihood‐ratio test and an inverse error function called ELR chart to monitor changes in the Weibull mean and variance simultaneously. The simulation approach is used to derive the average run length. We compare our proposed chart with other existing control charts for 3 cases, including scale parameter changes with fixed shape parameter, shape parameter changes with fixed scale parameter, and both parameters changes. The results show that the ELR chart outperforms the other control charts in terms of average run length in most cases. Two numerical examples are used to illustrate the applications of the proposed control chart.  相似文献   

10.
    
In this paper, the robustness of the multivariate exponentially weighted moving average (MEWMA) control chart to non‐normal data is examined. Two non‐normal distributions of interest are the multivariate distribution and the multivariate gamma distribution. Recommendations for constructing MEWMA control charts when the normality assumption may be violated are provided. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
    
A new hybrid exponentially weighted moving average (HEWMA) control chart has been proposed in the literature for efficiently monitoring the process mean. In that paper, the computed variance of the HEWMA statistic was, unfortunately, not correct! In this discussion, the correct variance of the HEWMA statistic is given, and the run length characteristics of the HEWMA control chart are studied and explored. It is noticed that not only the superiority of the HEWMA control chart remains over the existing (considered before) charts but also the new results based on the corrected control limits are more profound and reflective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
    
In practice, we may not always have normally distributed quality characteristics of interest. This leads to the need for non-parametric techniques which are not dependent on the assumptions about the parent distribution. This study develops a non-parametric exponentially weighted moving average (EWMA) chart (namely the NPSSEWMA chart) for an improved monitoring of process location. The proposal is based on the use of sign statistics on a moving pattern in an EWMA setup. The design structure of the proposed chart is developed and its performance is evaluated in terms of different properties including average run length (ARL), standard deviation run length (SDRL), percentiles, relative ARL (RARL), extra quadratic loss (EQL), and performance comparison index (PCI). The proposal is compared with recently developed non-parametric counterparts namely NPSEWMA, NPASEWMA, and NPSCUSUM charts. It is observed that the design structure of the proposed NPSSEWMA chart outshines the existing counterparts. An application example is also included in the study for practical demonstration.  相似文献   

13.
    
Nonparametric (or distribution-free) control charts are used for monitoring processes where there is a lack of knowledge about the underlying distribution. In this article, a triple exponentially weighted moving average control chart based on the signed-rank statistic (referred as TEWMA-SR chart) is proposed for monitoring shifts in the location parameter of an unknown, but continuous and symmetric, distribution. The run-length characteristics of the proposed chart are evaluated performing Monte Carlo simulations. A comparison study with other existing nonparametric control charts based on the signed-rank statistic, the TEWMA sign chart, and the parametric TEWMA-X¯ chart indicates that the proposed chart is more effective in detecting small shifts, while it is comparable with the other charts for moderate and large shifts. Finally, two illustrative examples are provided to demonstrate the application of the proposed chart.  相似文献   

14.
朱永忠  丁辉 《工业工程》2023,1(1):130-135, 181

传统Shewhart-p控制图只对单一属性的不合格品率进行监控,在过程发生偏移时有一定的滞后性。为提高不合格品率控制图的精度,提出一种多元指数加权移动平均不合格品率 (multivariate exponentially weighted moving average p, MEWMA-p)控制图。该控制图将多个属性的不合格品率应用于多元指数加权移动平均控制图,可同时对多个属性进行监控,并且对于小范围的偏移更加敏感。对比分析同等偏移程度下指数加权移动平均不合格品率 (exponentially weighted moving average p, EWMA-p) 控制图与MEWMA-p控制图的平均运行长度 (average run length, ARL) 结果,并通过模拟仿真说明该方法的有效性。

  相似文献   

15.
    
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
    
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
    
Exponentially weighted moving average (EWMA) control charts have received considerable attention for detecting small changes in the process mean or the process variability. Several EWMA control charts are constructed using logarithmic and normalizing transformations on unbiased sample variance for monitoring changes in the process dispersion. In this paper, we propose new EWMA control charts for monitoring process dispersion based on the best linear unbiased absolute estimators obtained under simple random sampling (SRS) and ranked set sampling (RSS) schemes, named EWMA‐SRS and EWMA‐RSS control charts. The performance of the proposed EWMA control charts is evaluated in terms of the average run length and standard deviation of run length, estimated by using Monte Carlo simulations. The proposed EWMA control charts are then compared with their existing counterparts for detecting increases and decreases in the process dispersion. It turns out that the EWMA‐RSS control chart performs uniformly better than its analogues for detecting overall changes in process dispersion. Moreover, the EWMA‐SRS chart significantly outperforms the existing EWMA charts for detecting increases in process variability. A real data set is also used to explain the construction and operations of the proposed EWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Adaptive cumulative sum (ACUSUM) charts, which adjust the reference value dynamically based on estimated shift size, provide good performance in detecting a range of mean shifts. However, when the range is wide, ACUSUM may not perform well for small shifts over the range. An adaptive runs rule, which is motivated by the concept of supplementary runs rule, is proposed, in order to make control charts more sensitive to small mean shifts. The adaptive runs rule assigns scores to consecutive runs based on the estimated shift size of the mean. The ACUSUM chart is supplemented with the adaptive runs rule to enhance its sensitivity in detecting small mean shifts. The average run length performance of the ACUSUM chart with the adaptive runs rule is compared with those of cumulative sum and variants of adaptive charts including ACUSUM. The experimental results reveal that the ACUSUM chart with the adaptive runs rule achieves superior detection performance over a wide range of mean shifts.  相似文献   

19.
A distribution-free tabular CUSUM chart for autocorrelated data   总被引:1,自引:0,他引:1  
A distribution-free tabular CUSUM chart called DFTC is designed to detect shifts in the mean of an autocorrelated process. The chart's Average Run Length (ARL) is approximated by generalizing Siegmund's ARL approximation for the conventional tabular CUSUM chart based on independent and identically distributed normal observations. Control limits for DFTC are computed from the generalized ARL approximation. Also discussed are the choice of reference value and the use of batch means to handle highly correlated processes. The performance of DFTC compared favorably with that of other distribution-free procedures in stationary test processes having various types of autocorrelation functions as well as normal or nonnormal marginals.  相似文献   

20.
    
Maximum exponentially weighted moving average (MaxEWMA) control charts have attracted substantial interest because of their ability to simultaneously detect increases and decreases in both the process mean and the process variability. In this paper, we propose new MaxEWMA control charts based on ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts, respectively. The proposed MaxEWMA control charts are based on the best linear unbiased estimators obtained under ODRSS and OIDRSS schemes. Extensive Monte Carlo simulations are used to estimate the average run length and standard deviation of the run length of the proposed MaxEWMA control charts. The run length performances and the diagnostic abilities of the proposed MaxEWMA control charts are compared with that of their counterparts based on simple random sampling (SRS), ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling schemes (OIRSS) schemes, that is, MaxEWMA‐SRS, maximum generally weighted moving average (MaxGWMA‐SRS), MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. It turns out that the proposed MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts perform uniformly better than the MaxEWMA‐SRS, MaxGWMA‐SRS, MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts in simultaneous detection of shifts in the process mean and variability. An application to real data is also provided to illustrate the implementations of the proposed and existing MaxEWMA control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号