首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M.J. Chae    D. Cheney    Y.-C. Su 《Journal of food science》2009,74(2):M62-M66
ABSTRACT:  This study investigated temperature effects on depuration for reducing Vibrio parahaemolyticus and Vibrio vulnificus in American oyster ( Crassostrea virginica ). Raw oysters were inoculated with 5-strain cocktail of V. parahaemolyticus or V. vulnificus to levels of 104 to 105 MPN (most probable number)/g and depurated in artificial seawater (ASW) at 22, 15, 10, and 5 °C. Depuration of oysters at 22 °C had limited effects on reducing V. parahaemolyticus or V. vulnificus in the oysters. Populations of V. parahaemolyticus and V. vulnificus were reduced by 1.2 and 2.0 log MPN/g, respectively, after 48 h of depuration at 22 °C. Decreasing water temperature to 15 °C increased the efficacy of depuration in reducing V. parahaemolyticus and V. vulnificus in oysters. Reductions of V. parahaemolyticus and V. vulnificus in oysters increased to 2.1 and 2.9 log MPN/g, respectively, after 48 h of depuration at 15 °C. However, depurations at 10 and 5 °C were less effective than at 15 °C in reducing the Vibrio spp. in oysters. Extended depuration at 15 °C for 96 h increased reductions of V. parahaemolyticus and V. vulnificus in oysters to 2.6 and 3.3 log MPN/g, respectively.  相似文献   

2.
The objective of this study was to identify the high pressure processing conditions (pressure level, time, and temperature) needed to achieve a 5-log reduction of Vibrio parahaemolyticus in live oysters (Crassostrea virginica). Ten strains of V. parahaemolyticus were separately tested for their resistances to high pressure. The two most pressure-resistant strains were then used as a cocktail to represent baro-tolerant environmental strains. To evaluate the effect of temperature on pressure inactivation of V. parahaemolyticus, Vibrio-free oyster meats were inoculated with the cocktail of V. parahaemolyticus and incubated at room temperature (approximately 21 degrees C) for 24 h. Oyster meats were then blended and treated at 250 MPa for 5 min, 300 MPa for 2 min, and 350 MPa for 1 min. Pressure treatments were carried out at -2, 1, 5, 10, 20, 30, 40, and 45 degrees C. Temperatures >/=30 degrees C enhanced pressure inactivation of V. parahaemolyticus. To achieve a 5-log reduction of V. parahaemolyticus in live oysters, pressure treatment needed to be >/=350 MPa for 2 min at temperatures between 1 and 35 degrees C and >/=300 MPa for 2 min at 40 degrees C.  相似文献   

3.
Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 x 10(7) CFU/ml) and V. vulnificus (8.69 x 10(7) CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (> 6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 10(4) and 10(6) most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8 h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (> 12 h) of oysters in EO water containing high levels of chlorine (> 30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to 6 h to avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.  相似文献   

4.
福建省带壳牡蛎中副溶血性弧菌的市场调查   总被引:3,自引:3,他引:3       下载免费PDF全文
为了解零售带壳牡蛎中副溶血性弧菌(VP)的污染情况,2003年4月~2004年3月每月在福建省福州和厦门两地收集带壳牡蛎,样品共252份,分别来自水产品批发市场(11%)、零售市场(50%)和饭店(39%)。采用Vitek鉴定系统和最可能数(MPN)法进行VP的定性和定量分析。结果显示,带壳牡蛎VP几何平均密度为46MPN,100g,46%的试样VP密度低于30MPN/100g的最低检出限,仅厦门2个试样菌量超过104MPIN/100g。两个地区、不同采样点和不同季节之间试样vP平均密度差别均有显性。厦门试样菌量高于福州;批发市场试样菌量最高;春季试样菌量(93MPN/100g)高于其它季节(约为40MPN/100g)。研究结果可以用于估计生食牡蛎人群VP的暴露量。  相似文献   

5.
Vibrio vulnificus and V. parahaemolyticus are natural inhabitants of estuarine environments world wide. Pathogenic strains of these bacteria are often transmitted to humans through consumption of raw oysters, which flourish in the same estuaries. Previous studies reported the effective use of hot water pasteurization followed by cold shock to eliminate from raw oysters naturally and artificially incurred environmental strains of V. vulnificus and V. parahaemolyticus common to the Gulf of Mexico. The present study focused on the use of the same pasteurization method to reduce a highly process resistant Vibrio strain, V. parahaemolyticus O3:K6 to non-detectable levels. Oysters were artificially contaminated with 10(4) and 10(6) V. parahaemolyticus 03:K6 cfu g(-1) oyster meat. Contaminated oysters were pasteurized between 50 and 52 degrees C for up to 22 min. Samples of processed oysters were enumerated for V. parahaemolyticus O3:K6 at 2-min intervals beginning after the 'come-up time' to achieve an oyster internal temperature of at least 50 degrees C. The D value (D(52)deg C) was 1.3-1.6 min. V. parahaemolyticus O3:K6 proved more process resistant than non-pathogenic environmental strains found in Gulf of Mexico waters. A total processing time of at least 22 min at 52 degrees C was recommended to reduce this bacterium to non-detectable levels (< 3 g(-1) oyster meat).  相似文献   

6.
Occurrence of Vibrio parahaemolyticus in Two Oregon Oyster-growing Bays   总被引:1,自引:0,他引:1  
ABSTRACT: Occurrence of Vibrio parahaemolyticus in 2 Oregon oyster-growing areas (Yaquina andTillamook Bays) was studied from November 2002 to October 2003. Vibrio parahaemolyticus was detected in 15.0% of oyster, 20.0% of seawater, and 47.5% of sediment samples with very low levels of pathogenic strains being detected in oysters (≤3.6 most probable number [MPN] /g). The densities of total and pathogenic V. parahaemolyticus were higher in sediment (≤1100 and ≤43 MPN/g) than in seawater (≤15 and ≤3.6 MPN/100 mL) or oyster (≤43 and ≤3.6 MPN/ g). Densities of V. parahaemolyticus in both bays were positively correlated to water temperatures ( P < 0.01), with higher densities in samples being detected in summer, especially July and August. There was no correlation between the densities of V. parahaemolyticus and water salinity or the densities of V. parahaemolyticus and bacterial populations in seawater. Freshly harvested oysters should be kept at refrigeration temperatures to prevent rapid growth of pathogenic V. parahaemolyticus in contaminated oysters.  相似文献   

7.
This study examined the variability in the levels of total and pathogenic Vibrio parahaemolyticus in individual oysters. Twenty oysters were collected on three occasions (in June, July, and September 2001) from a site near Mobile Bay, Ala. Ten of these oysters were tested immediately, and 10 were tested after 24 h of storage at 26 degrees C. Levels of total and pathogenic V. parahaemolyticus were determined by alkaline phosphatase-labeled DNA probe procedures targeting the thermolabile hemolysin and thermostable direct hemolysin genes, respectively. Similar V. parahaemolyticus levels (200 to 2,000 CFU/g) were found in nearly 90% of the oysters (for all sampling occasions) prior to storage. The log-transformed densities (means +/- standard deviations) of V. parahaemolyticus in oysters immediately after harvest were 2.90 +/- 0.91, 2.88 +/- 0.36, and 2.47 +/- 0.26 log10 CFU/g for June, July, and September, respectively. After storage for 24 h at 26 degrees C, the mean V. parahaemolyticus densities increased approximately 13- to 26-fold. Before storage, pathogenic V. parahaemolyticus was detected in 40% (10 to 20 CFU/g) of the oysters collected in June and July but was not detected in any oysters collected in September. After storage, pathogenic V. parahaemolyticus was detected in some oysters at levels of > 100 CFU/g. These data should aid in the development of sampling protocols for oyster monitoring programs and in the determination of exposure distributions associated with raw oyster consumption.  相似文献   

8.
温暖月份零售带壳牡蛎中副溶血性弧菌的定量研究   总被引:16,自引:3,他引:16       下载免费PDF全文
为了解温暖月份零售带壳牡蛎中副溶血性弧菌 (VP)的污染情况 ,2 0 0 3年 4~ 8月在福建省福州和厦门两地共收集带壳牡蛎 113份 ,样品分别来自水产品批发市场 (18% ) ,零售市场 (4 6 % )和饭店 (36 % )。采用Vitek鉴定系统和最可能数法进行VP的定量分析。结果显示 ,带壳牡蛎中VP密度的几何均数为 6 0MPN 10 0g ,4 1 6 %的样品VP密度低于 30MPN 10 0g的最低检出限 ,仅厦门2个样品菌量超过 2 4 0 0 0MPN 10 0g。两个地区、不同采样点和不同月份之间样品VP密度的几何均数差别均有统计学意义 (P <0 0 1)。厦门样品污染菌量高于福州 ;批发市场样品菌量最高 ;5月份样品菌量最高 ,为 14 9MPN 10 0g ,而 6~ 8月样品菌量约为 4 0MPN 10 0g。零售环节带壳牡蛎VP的检出率较高。未来应加强对生食海产品中VP污染状况的监测。  相似文献   

9.
Vibrio vulnificus is frequently associated with oysters, and since oysters are typically consumed raw on a half shell, they can pose a threat to public health due to ingestion of this pathogenic marine microorganism. Oysters should be processed to reduce the number of this pathogen. High pressure processing is gaining more and more acceptance among oyster processors due to its ability to shuck oysters while keeping the fresh-like characteristics of oysters. Nine strains of V. vulnificus were tested for their sensitivities to high pressure. The most pressure-resistant strain of V. vulnificus, MLT 403, was selected and used in the subsequent experiments to represent a worst case scenario for evaluation of the processing parameters for inactivation of V. vulnificus in oysters. To evaluate the effect of temperature on pressure inactivation of V. vulnificus, oyster meats were inoculated with V. vulnificus MLT 403 and incubated at room temperature for 24 h. Oyster meats were then blended and treated at 150 MPa for 4 min, and 200 MPa for 1 min. Pressure treatments were carried out at -2, 1, 5, 10, 20, 30, 40, and 45 degrees C. Cold temperatures (<20 degrees C) and slightly elevated temperatures (>30 degrees C) substantially increased pressure inactivation of V. vulnificus. For example, a 4-min treatment of 150 MPa at -2 and 40 degrees C reduced the counts of V. vulnificus by 4.7 and 2.8 log, respectively, while at 20 degrees C the same treatment only reduced counts by 0.5 log. Temperatures of -2 and 1 degrees C were used to determine the effect of pressure level, temperature, and treatment time on the inactivation of V. vulnificus infected to live oysters through feeding. To achieve a >5-log reduction in the counts of V. vulnificus in a relatively short treatment time (or=250 MPa at -2 or 1 degrees C.  相似文献   

10.
Oysters at the retail stage of distribution generally contain greater densities of Vibrio parahaemolyticus than do oysters at harvest. The objective of this study was to determine the effects of postharvest storage at 26 and 3 degrees C on the growth and survival of naturally occurring V. parahaemolyticus in shellstock American oysters (Crassostrea virginica). Oysters were collected monthly from May 1998 through April 1999 from Mobile Bay, Alabama, and their V. parahaemolyticus densities were determined after 0, 5, 10, and 24 h of postharvest storage at 26 degrees C. After 24 h of storage at 26 degrees C, oysters were transferred to a refrigerator at 3 degrees C and analyzed 14 to 17 days later. V. parahaemolyticus numbers were determined by a direct plating method involving an alkaline-phosphatase-labeled DNA probe that targets the species-specific thermolabile hemolysin gene (tlh-AP) to identify suspect isolates. From April to December, when water temperatures at harvest were >20 degrees C, the geometric mean harvest density of V. parahaemolyticus was 130 CFU/g. When water temperatures were <20 degrees C, the geometric mean harvest density was 15 CFU/g. After harvest, V. parahaemolyticus multiplied rapidly in live oysters held at 26 degrees C, showing a 50-fold increase (1.7 log CFU/g) at 10 h and a 790-fold increase (2.9 log CFU/g) at 24 h (April through December). Average V. parahaemolyticus numbers showed a sixfold decrease (0.8 log CFU/g) after approximately 14 days of refrigeration. These results indicate that V. parahaemolyticus can grow rapidly in unrefrigerated oysters.  相似文献   

11.
From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets: and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%). Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnifcus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyicus. Overall, there was a significant correlation between V. vulificus and V. parahaemolyticus densities (r = 0.72, n = 202, P < 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.  相似文献   

12.
Vibrio vulnificus and V. parahaemolyticus are natural inhabitants of estuarine environments and may be transmitted to humans by ingestion of raw oysters. This study focused on the use of low temperature pasteurization, to reduce these Vibrio spp. to nondetectable levels, thus reducing the risk of infection associated with raw oyster consumption. Artificially inoculated V. vulnificus and V. parahaemolyticus and naturally-contaminated V. vulnificus in live oysters were pasteurized at 50%deg;C for up to 15min. Samples of processed and unprocessed oysters were enumerated for V. vulnificus, V. parahaemolyticus, and aerobic spoilage bacteria for 0-14 days. Low temperature pasteurization was effective in reducing these pathogens from > 100000 to non-detectable levels in less than 10min of processing. Spoilage bacteria were reduced by 2-3 logs, thus increasing the shelf-life for up to 7 days beyond live unprocessed oysters. Vibrio vulnificus in control oysters was reduced by 102 during ice storage alone. Following pasteurization and during a temperature storage abuse study (24h at 22°C), V. vulnificus was not recovered. During this storage period spoilage bacteria exceeded 1 million/g oyster meat.  相似文献   

13.
The efficacy of depuration using UV light and chlorinated seawater for decontaminating Vibrio parahaemolyticus and Vibrio vulnificus from oysters was investigated. Oysters were contaminated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus to levels of 10(4) to 10(5) CFU ml(-1) for bioaccumulation. The depuration was conducted in a closed system in which 350 liters of seawater was recirculated at a rate of 7 liters/min for 48 h at room temperature. Counts of V. parahaemolyticus or V. vulnificus were determined at 0, 6, 18, 24, and 48 h. Three treatments were conducted: T1, control treatment; T2, UV treatment; and T3, UV plus chlorine treatment. After 48 h of depuration of V. parahaemolyticus, T3 reduced the count by 3.1 log most probable number (MPN) g(-1) and T2 reduced the count by 2.4 log MPN g(-1), while T1 reduced the count by only 2.0 log MPN g(-1). After 48 h of depuration of V. vulnificus, T2 and T3 were efficient, reducing the counts by 2.5 and 2.4 log MPN g(-1), respectively, while T1 reduced the count by only 1.4 log MPN g(-1). The UV light plus chlorine treatment was more efficient for controlling V. parahaemolyticus in oysters. Both UV light and UV light plus chlorine were efficient for V. vulnificus. The present study is the first report showing the efficacy of depuration systems for decontaminating V. parahaemolyticus and V. vulnificus in oysters cultivated on the Brazilian coast. This study provides information on processes that can contribute to controlling and preventing such microorganisms in oysters and could be used for effective postharvest treatment by restaurants and small producers of oysters on the coast of Brazil.  相似文献   

14.
This study examined the relationship between levels of total Vibrio parahaemolyticus found in oyster tissues and mantle fluid with the goal of using mantle fluid as a template matrix in a new quantitative real-time PCR assay targeting the thermolabile hemolysin (tlh) gene for the enumeration of total V. parahaemolyticus in oysters. Oysters were collected near Mobile Bay, Ala., in June, July, and September and tested immediately after collection and storage at 26 degrees C for 24 h. Initial experiments using DNA colony hybridization targeting tlh demonstrated that natural V. parahaemolyticus levels in the mantle fluid of individual oysters were strongly correlated (r = 0.85, P < 0.05) with the levels found in their tissues. When known quantities of cultured V. parahaemolyticus cells were added to real-time PCR reactions that contained mantle fluid and oyster tissue matrices separately pooled from multiple oysters, a strong linear correlation was observed between the real-time PCR cycle threshold and the log concentration of cells inoculated into each PCR reaction (mantle fluid: r = 0.98, P < 0.05; and oyster: r = 0.99, P < 0.05). However, the mantle fluid exhibited less inhibition of the PCR amplification than the homogenized oyster tissue. Analysis of natural V. parahaemolyticus populations in mantle fluids using both colony hybridization and real-time PCR demonstrated a significant (P < 0.05) but reduced correlation (r = -0.48) between the two methods. Reductions in the efficiency of the real-time PCR that resulted from low population densities of V. parahaemolyticus and PCR inhibitors present in the mantle fluid of some oysters (with significant oyster-to-oyster variation) contributed to the reduction in correlation between the methods that was observed when testing natural V. parahaemolyticus populations. The V. parahaemolyticus-specific real-time PCR assay used for this study could estimate elevated V. parahaemolyticus levels in oyster mantle fluid within 1 h from sampling time.  相似文献   

15.
Inactivation studies for Vibrio parahaemolyticus TX-2103 (serotype O3:K6) and Vibrio vulnificus MO-624 (clinical isolate) were conducted in phosphate-buffered saline (PBS) and in inoculated oysters under high-pressure processing conditions. V. parahaemolyticus was more resistant than V. vulnificus in PBS at all pressures and times. A 6-log reduction of V. parahaemolyticus and V. vulnificus in PBS at 241 MPa required 11 and 5 min, respectively, which included a 3-min pressure come-up time. A 4.5-log reduction of V. parahaemolyticus in oysters at 345 MPa required 7.7 min, which included a 6.7-min pressure come-up time. More than a 5.4-log reduction of V. vulnificus in oysters at 345 MPa occurred during the 6-min pressure come-up time. Both V. parahaemolyticus and V. vulnificus in PBS and in oysters were reduced to nondetectable numbers at 586 MPa during the 8- and 7-min pressure come-up times, respectively.  相似文献   

16.
Vibrio vulnificus is a foodborne pathogen associated with consumption of raw oyster. No scientific data is available on postharvest treatments of oyster by ultrasound, ozone, and organic acids. This study was designed to investigate the effects of these treatments on inactivation of V. vulnificus naturally present in the in-shell or half-shelled oysters. In in-shell oysters, these treatments were not effective in reducing the number of this pathogen. Half-shelled oysters treated with ultrasound, and ozone in 2% saline for 30 min had 1 and 1.5 log less V. vulnificus, respectively (p<0.05). Treatment of half-shelled oysters by 50 and 100% lemon juice, 5% citric acid, 10% citric acid, or vinegar for 30 min resulted in a significant reduction (2–4 log) in the numbers of V. vulnificus (p<0.05). Although these methods significantly reduced the population of V. vulnificus in raw oysters, they were not able to reduce the numbers of this pathogen to acceptable level (<3 MPN/g).  相似文献   

17.
In 2009 the U.S. Food and Drug Administration (FDA) announced its intention to implement postharvest processing (PHP) methods to eliminate Vibrio vulnificus from oysters intended for the raw, half-shell market that are harvested from the Gulf of Mexico during warmer months. FDA-approved PHP methods can be expensive and may be associated with unfavorable responses from some consumers. A relatively unexplored PHP method that uses relaying to high salinity waters could be an alternative strategy, considering that high salinities appear to negatively affect the survival of V. vulnificus. During relay, however, oysters may be exposed to rapid and large salinity increases that could cause increased mortality. In this study, the effectiveness of high salinity relay to reduce V. vulnificus to <30 most probable number (MPN) per g and the impact on oyster mortality were assessed in the lower Chesapeake Bay. Two relay experiments were performed during the summer and fall of 2010. Oysters collected from three grow-out sites, a low salinity site (14 to 15 practical salinity units [psu]) and two moderate salinity sites (22 to 25 psu), were relayed directly to a high salinity site (≥30 psu) on Virginia's Eastern Shore. Oysters were assayed for V. vulnificus and Vibrio parahaemolyticus (another Vibrio species of concern) densities at time 0 prior to relay and after 7 and 14 days of relay, using the FDA MPN enrichment method combined with detection by real-time PCR. After 14 days, both V. vulnificus and V. parahaemolyticus densities were ≤0.8 MPN/g, and decreases of 2 to 3 log in V. vulnificus densities were observed. Oyster mortalities were low (≤4%) even for oysters from the low salinity harvest site, which experienced a salinity increase of approximately 15 psu. Results, although preliminary and requiring formal validation and economic analysis, suggest that high salinity relay could be an effective PHP method.  相似文献   

18.
M Ye  Y Huang  H Chen 《Food microbiology》2012,32(1):179-184
Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200–300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200–300 MPa for 2 min at 21 °C followed by heat treatment at 40–50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200–300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7–2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (<3 MPN/g). HHP at ≥275 MPa for 2 min followed by heat treatment at 45 °C for 20 min and HHP at ≥200 MPa for 2 min followed by heat treatment at 50 °C for 15 min completely eliminated both pathogens in oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters.  相似文献   

19.
Vibrio parahaemolyticus ATCC 43996 was grown at 15°C for 53 h, 20°C for 24 h, 25°C for 12 h, 30°C for 9 h, 35°C for 9 h, or 40°C for 6 h to early stationary phase. Oyster meats were blended, autoclaved at 121°C for 15 min, inoculated with V. parahaemolyticus, and pressure treated at 250 MPa for 2 and 3 min and at 300 MPa for 1 and 2 min at 21°C. Overall, growth temperatures of 20 and 40°C yielded the greatest pressure resistance in V. parahaemolyticus. The effects of salt concentration and H(2)O(2)-degrading compounds on the recovery of V. parahaemolyticus also were investigated. Sterile oyster meats were inoculated with V. parahaemolyticus and treated at 250 MPa for 1, 2, or 3 min at 21°C. These meats were then blended with 0.1% peptone water supplemented with 0.5 to 1.5% NaCl and plated on tryptic soy agar (TSA) supplemented with 0 to 3.5% NaCl. For recovery of pressure-injured cells, peptone water with 1% NaCl and TSA with 0.5% NaCl were the best diluent and plating medium, respectively. Addition of sodium pyruvate (0.05 to 0.2%) or catalase (8 to 32 U/ml) did not increase the recovery of V. parahaemolyticus after pressure treatment. The effect of incubation temperature and gas atmosphere on the recovery of V. parahaemolyticus after pressure treatment also was determined. Aerobic incubation at 30°C resulted in the highest recovery of V. parahaemolyticus in sterile oyster meats. The 30°C incubation temperature was also the optimum temperature for recovery of V. parahaemolyticus in pressure-treated live oysters. The results of this study indicate that the growth conditions for V. parahaemolyticus before and after high hydrostatic pressure treatment should be taken into consideration when assessing the efficacy of pressure inactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号