首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NHA1 encodes a K(+) (Na(+))/H(+) antiporter in the plasma membrane of Saccharomyces cerevisiae. We report that cells expressing the NHA1 gene contained less K(+) than the mutant lacking the gene when grown without K(+) limitation. They also grew better at low K(+) and showed higher affinity of transport than the nha1 strain. In agreement with the function of an electroneutral cation/H(+) antiporter, the effect was only observed at acidic pH. The improved growth and transport depended on the presence of Trk1p (the main K(+) influx system) and did not require the product of TRK2. We propose that Nha1p regulates the potassium content of the cell and, as a consequence, can affect the activity of the main K(+) influx system (Trk1p).  相似文献   

2.
The SEB1/SBH1 and the SSO genes encode components of the protein secretory machinery functioning at the opposite ends, ER translocation and exocytosis, respectively, of the secretory pathway in Saccharomyces cerevisiae. Overexpression of these genes can rescue temperature-sensitive (ts) growth defect of many sec mutants impaired in protein secretion. Furthermore, their overexpression in wild-type yeast enhances production of secreted proteins in S. cerevisiae, which suggests that they may be rate-limiting factors in this process. Here we report isolation of Kluyveromyces lactis homologues of these genes. KlSSO1 and KlSEB1 were isolated as clones capable of rescuing growth of ts sso2-1 and seb1Delta seb2Delta sem1Delta strains, respectively, at the restrictive temperature. The encoded Kluyveromyces proteins are up to 70% identical with the S. cerevisiae homologues at the amino acid level and can functionally replace them. Interestingly, KlSSO1 and KlSEB1 show similar enhancing effect on production of a secreted protein as the SSO and SEB1 genes of S. cerevisiae when overexpressed. In accordance with the high homology level of the secretory pathway proteins in different yeast species, the polyclonal antibodies raised against S. cerevisiae Seb1p, Sso2p and Sec4p can detect homologous proteins in cell lysates of K. lactis and Pichia pastoris, the latter also in Candida utilis. The GenBank Accession Nos are AF307983 (K. lactis SSO1) and AF318314 (K. lactis SEB1).  相似文献   

3.
4.
Null mutations in the structural gene encoding phosphoglucose isomerase completely abolish activity of this glycolytic enzyme in Kluyveromyces lactis and Saccharomyces cerevisiae. In S. cerevisiae, the pgi1 null mutation abolishes growth on glucose, whereas K.lactis rag2 null mutants still grow on glucose. It has been proposed that, in the latter case, growth on glucose is made possible by an ability of K. lactis mitochondria to oxidize cytosolic NADPH. This would allow for a re-routing of glucose dissimilation via the pentose-phosphate pathway. Consistent with this hypothesis, mitochondria of S. cerevisiae cannot oxidize NADPH. In the present study, the ability of K. lactis mitochondria to oxidize cytosolic NADPH was experimentally investigated. Respiration-competent mitochondria were isolated from aerobic, glucose-limited chemostat cultures of the wild-type K. lactis strain CBS 2359 and from an isogenic rag2Delta strain. Oxygen-uptake experiments confirmed the presence of a mitochondrial NADPH dehydrogenase in K.lactis. This activity was ca. 2.5-fold higher in the rag2Delta mutant than in the wild-type strain. In contrast to mitochondria from wild-type K. lactis, mitochondria from the rag2Delta mutant exhibited high rates of ethanol-dependent oxygen uptake. Subcellular fractionation studies demonstrated that, in the rag2Delta mutant, a mitochondrial alcohol dehydrogenase was present and that activity of a cytosolic NADPH-dependent 'acetaldehyde reductase' was also increased. These observations indicate that two mechanisms may participate in mitochondrial oxidation of cytosolic NADPH by K. lactis mitochondria: (a) direct oxidation of cytosolic NADPH by a mitochondrial NADPH dehydrogenase; and (b) a two-compartment transhydrogenase cycle involving NADP(+)- and NAD(+)-dependent alcohol dehydrogenases.  相似文献   

5.
Trk, encoded by the partially redundant genes TRK1 and TRK2, is the major potassium transporter of Saccharomyces cerevisiae. This system is specific for potassium and rubidium but, by reducing the electrical membrane potential of the plasma membrane, Trk decreases the uptake of toxic cations such as lithium, calcium, aminoglycosides and polyamines, which are transported by other systems. Gain- and loss-of-function studies indicate that TPS1, a gene encoding trehalose-6-phosphate synthase and known to modulate glucose metabolism, activates Trk and reduces the sensitivity of yeast cells to many toxic cations. This effect is independent of known regulators of Trk, such as the Hal4 and Hal5 protein kinases and the protein phosphatase calcineurin. Mutants defective in isoform 2 of phosphoglucomutase (pgm2) and mutants defective in isoform 2 of hexokinase (hxk2) exhibit similar phenotypes of reduced Trk activity and increased sensitivity to toxic cations compared with tps1 mutants. In all cases Trk activity was positively correlated with levels of glucose phosphates (glc-1-P and glc-6-P). These results indicate that Tps1, like Pgm2 and Hxk2, increases the levels of glucose phosphates and suggest that these metabolites, directly or indirectly, activate Trk.  相似文献   

6.
7.
The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis   总被引:5,自引:0,他引:5  
We have studied the alcohol dehydrogenase (ADH) system in the yeast Kluyveromyces lactis. Southern hybridization to the Saccharomyces cerevisiae ADH2 gene indicates four probable structural ADH genes in K. lactis. Two of these genes have been isolated from a genomic bank by hybridization to ADH2. The nucleotide sequence of one of these genes shows 80% and 50% sequence identity to the ADH genes of S. cerevisiae and Schizosaccharomyces pombe respectively. One K. lactis ADH gene is preferentially expressed in glucose-grown cells and, in analogy to S. cerevisiae, was named K1ADH1. The other gene, homologous to K1ADH1 in sequence, shows an amino-terminal extension which displays all of the characteristics of a mitochondrial targeting presequence. We named this gene K1ADH3. The two genes have been localized on different chromosomes by Southern hybridization to an orthogonal-field-alternation gel electrophoresis-resolved K. lactis genome. ADH activities resolved by gel electrophoresis revealed several ADH isozymes which are differently expressed in K. lactis cells depending on the carbon source.  相似文献   

8.
We have undertaken a search for autonomously replicating (ARSs) from Kluyveromyces lactis chromosomal DNA able to sustain plasmid replication in K. lactis and in Saccharomyces cerevisiae. The discovery of such sequences might be interesting for the comparison of ARSs from different sources and possibly useful for the construction of multivalent vectors. HindIII fragments from K. lactis chromosomal DNA were inserted in the YIp5 plasmid (lacking an origin of replication) and the resulting chimaeric plasmids were selected for the ability to transform S. cerevisiae. Four plasmids were identified and further analysed. Two contained the same 1.8 kb K. lactis fragment and transformed both K. lactis and S. cerevisiae with the same efficiency and stability, whereas the third transformed only S. cerevisiae and the fourth transformed K. lactis with a higher efficiency than S. cerevisiae. A detailed study was performed on the 1.8 kb fragment which exhibited ARS function in both yeasts. The fragment was subcloned using different restriction enzymes and Bal31 exonuclease. Subclones were tested for ARS function. ARS activities in the two yeasts were localized in the same 100 bp region. Sequencing demonstrated the presence in this region of the dodecanucleotide 5'ATTTATTGTTTT3' differing from the ARS core consensus of S. cerevisiae only by a T insertion. A similar nucleotide sequence is present in the putative replication origin of the 2 mu-like plasmid pKD1 which stably replicates in K. lactis. Homologies with ARSs from S. cerevisiae were also found in the regions flanking the above-mentioned dodecanucleotide.  相似文献   

9.
We have isolated the KlLSM4 gene as a multicopy suppressor of a Kluyveromyces lactis mutant which shows a rag(-) phenotype (resistance to antimycin A on glucose). This gene is homologous to the ScLSM4 of Saccharomyces cerevisiae, which codes for an essential 187 amino acid protein containing Sm-like domains. These motifs are present in the evolutionarily conserved family of the Sm-like proteins, which are involved in a large number of cellular processes, including pre-mRNA splicing and mRNA decapping. We demonstrated that the first 72 amino acids of KlLsm4p, which contain the Sm-like domains, can restore cell viability in both K. lactis and S. cerevisiae cells lacking the wild-type protein. However, the absence of the carboxy-terminal region resulted in a remarkable loss of cell viability in the stationary phase. The KlLSM4 sequence has been deposited in the EMBL Data library under Accession No. AJ311719.  相似文献   

10.
Candida krusei is a pathogenic yeast species that is phylogenetically outside both of the well-studied yeast groups, whole genome duplication and CUG. Like all other yeast species, it needs to accumulate high amounts of potassium cations, which are needed for proliferation and many other cell functions. A search in the sequenced genomes of nine C. krusei strains revealed the existence of two highly conserved genes encoding putative potassium uptake systems. Both of them belong to the TRK family, whose members have been found in all the sequenced genomes of species from the Saccharomycetales subclade. Analysis and comparison of the two C. krusei Trk sequences revealed all the typical features of yeast Trk proteins but also an unusual extension of the CkTrk2 hydrophilic N-terminus. The expression of both putative CkTRK genes in Saccharomyces cerevisiae lacking its own potassium importers showed that only CkTrk1 is able to complement the absence of S. cerevisiae's own transporters and provide cells with a sufficient amount of potassium. Interestingly, a portion of the CkTrk1 molecules were localized to the vacuolar membrane. The presence of CkTrk2 had no evident phenotype, due to the fact that this protein was not correctly targeted to the S. cerevisiae plasma membrane. Thus, CkTrk2 is the first studied yeast Trk protein to date that was not properly recognized and targeted to the plasma membrane upon heterologous expression in S. cerevisiae.  相似文献   

11.
In Saccharomyces cerevisiae, Bik1p is a microtubule plus-end-tracking protein that plays several roles in mitosis and ploidy. KlBik1p (from Kluyveromyces lactis) maintains the same structural-domain organization as does S. cerevisiae Bik1p. As part of its characterization, we constructed a stable klbik1 mutant which is sensitive to benomyl only at 14 degrees C and has a higher frequency of crescent-shaped nuclei than S. cerevisiae bik1 mutants. This phenotype is partially rescued by S. cerevisiae BIK1. Other phenotypes associated with bik1 are not present in the K. lactis mutant. By fusion to GFP we were able to show the functionality of the KlBik1p CAP-Gly domain and found that the fusion protein changes its cellular location during the cell cycle.  相似文献   

12.
A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells.  相似文献   

13.
We have isolated mutants responsible for a super-secretion phenotype in Kluyveromyces lactis using the gene coding for a Bacillus amyloliquefaciens alpha-amylase as a marker for secretion. These mutations defined two groups, dominant and recessive. The recessive mutant strain, which secreted the heterologous protein in five-fold excess compared to the wild-type strain, was used for the cloning of genes, restraining the super-secreting phenotype. In screening for genes affecting super-secreting phenotype, we found that multiple copies of 10 different independently isolated DNA sequences suppressed the super-secreting phenotype. The first among the genes characterized, named KlSEL1 ('secretion lowering') showed homology to Saccharomyces cerevisiae ORF YML013w. The KlSEL1 gene is predicted to encode a polypeptide of 620 amino acid residues containing a putative transmembrane domain and UBX domain, characteristic for the ubiquitin-regulatory proteins. We demonstrated that the disruption of the SEL1 orthologues in K. lactis and S. cerevisiae conferred the super-secreting phenotype. SEL1 isolated from S. cerevisiae suppressed the super-secretion phenotype in K. lactis klsel1 strain, likewise homologous KlSEL1. No other phenotypic features for strains lacking the SEL1 gene were noticed except for the S. cerevisiae mutant growth being notably slower than in a wt strain. No growth changes were observed in the K. lactis klsel1 mutant. The set of genes (suppressors of over-secreting phenotype) could be attractive for further analysis of gene functions, super-secreting mechanisms and construction of new strains. This collection could be useful for the expedient construction of reduced yeast genomes, optimized for heterologous protein secretion.  相似文献   

14.
Cellular integrity in yeasts is ensured by a rigid cell wall whose synthesis is controlled by a MAP kinase signal transduction cascade. In Saccharomyces cerevisiae upstream regulatory components of this MAP kinase pathway involve a single protein kinase C, which is regulated in part by interaction with the small GTPase Rho1p. This small G protein is in turn rendered inactive (GDP-bound) or is activated (GTP-bound) by the influence of GTPase activating proteins (GAPs) and the GDP/GTP exchange factors (GEFs), respectively. We report here on the isolation of a gene from Kluyveromyces lactis, KlROM2, which encodes a member of the latter protein family. The nucleotide sequence contains an open reading frame of 1227 amino acids, with an overall identity of 57% to the Rom2 protein of S. cerevisiae. Four conserved sequence motifs could be identified: a RhoGEF domain, a DEP sequence, a CNH domain and a less conserved pleckstrin homology (PH) sequence. Klrom2 null mutants show a lethal phenotype, which indicates that the gene may encode the only functional GEF regulating the cellular integrity pathway in K. lactis. Conditional genomic expression of KlROM2 resulted in sensitivity towards caffeine and Calcofluor white as typical phenotypes of mutants defective in this pathway. Overexpression of KIROM2 from multicopy plasmids under the control of the ScGAL1 promoter severely impaired growth in both S. cerevisiae and in K. lactis. The fact that the lethal phenotype was not prevented in mpk1 deletion mutants indicates that growth inhibition is not simply caused by hyperactivation of the Pkc1p signal transduction pathway.  相似文献   

15.
AtChx17p is a putative K(+)/H(+) exchanger from Arabidopsis thaliana, expressed in the roots and probably involved in K(+) acquisition and homeostasis. AtCHX17 cDNA complements the phenotypes of the kha1Delta mutation in S. cerevisiae cells: a growth defect at increased pH and hygromycin sensitivity. The localization of GFP-tagged AtChx17 protein in yeast cells is similar to that of ScKha1p: a bold dotted pattern inside the cells resembling the Golgi fluorescence markers. These results show that (a) the proteins AtChx17 and ScKha1 could have similar functions and (b) S. cerevisiae kha1 deletion mutants could serve for the heterologous expression and characterization of plant transporters. The results of this work are evidence that a S. cerevisiae strain with deletions of genes encoding alkali-metal-cation/H(+) antiporters (i.e. Nha1p, Nhx1p, Kha1p) could be an ideal tool for expression and functional analysis of any type of similar plant antiporters (plasma membrane, endosomal/prevacuolar and Golgi).  相似文献   

16.
The TRP1 gene of the yeast Kluyveromyces lactis has been cloned from a genomic library by complementation of the Saccharomyces cerevisiae trp1-289 mutation. The gene was located within the clone by transposon mutagenesis and the coding region identified by DNA sequencing. This has indicated that K. lactis TRP1 encodes a 210-amino acid polypeptide which shows 53% identity to the homologous S. cerevisiae protein. The K. lactis TRP1 gene has been disrupted by substituting the S. cerevisiae URA3 gene for a large part of the TRP1 coding sequence. Replacement of the chromosomal TRP1 locus with this construction has enabled the production of non-reverting trp1- strains of K. lactis, while a genetic analysis of the disrupted allele confirmed that the TRP1 gene had been cloned. DNA sequencing has also shown that the K. lactis TRP1 sequence is flanked by genes encoding inorganic pyrophosphatase and histone H3, which we have designated IPP and HHT1 respectively. Hybridization studies have shown that in common with S. cerevisiae, K. lactis has two copies of the histone H3 gene. Each H3 gene is closely linked to a gene encoding histone H4 and in both yeast species the IPP gene is tightly linked to one of the histone gene pairs.  相似文献   

17.
The ubiquitin encoding genes of Kluyveromyces lactis were cloned. Three genes, KlUBI1, KlUBI3 and KlUBI4, were found in this yeast, while in Saccharomyces cerevisiae there are four genes, UBI1, -2, -3 and -4. The UBI1/UBI2 duplication is thus absent from the K. lactis genome. General structural features of ubiquitin genes were very similar in these two species (presence of an intron in KlUBI1, fusion to ribosomal protein genes in KlUBI1 and KlUBI3, spacer-less polyubiquitin repeats in KlUBI4). Disruption or deletion of K. lactis ubiquitin genes showed that: (a) disruption of KlUBI1 was lethal (in S. cerevisiae, ubi1/ubi2 double deletion is lethal); (b) KlUBI3 is also an essential gene for cell growth; (c) deletion of KlUBI4 led to an increased sensitivity to high temperature, similar to the ubi4 mutation in S. cerevisiae, but, in contrast to the latter, the klubi4 mutant was not sensitive to carbon or nitrogen source starvation. The syntenic relationship of ubiquitin loci between K. lactis and S. cerevisiae genomes is also described.  相似文献   

18.
19.
20.
The functional expression of the mouse Kir2.1 potassium channel in yeast cells lacking transport systems for potassium and sodium efflux (ena1-4delta nha1delta) resulted in increased cell sensitivity to high external concentrations of potassium. The phenotype depended on the level of Kir2.1 expression and on the external pH. The activity of Kir2.1p in the yeast cells was almost negligible at pH 3.0 and the highest at pH 7.0. Kir2.1p was permeable for both potassium and rubidium cations, but neither sodium nor lithium were transported via the channel. Measurements of the cation contents in cells confirmed the higher concentration of potassium in cells with Kir2.1p. Specific inhibition of the mKir2.1 channel activity by Ba2+ cations was observed. The use of a mutant strain lacking both potassium efflux and uptake transporters (ena1-4delta nha1delta trk1delta trk2delta) enabled the monitoring of channel activity on two levels--the provision of the necessary amount of intracellular K+ in media with low potassium concentrations, and simultaneously, the channel's contribution to cell potassium sensitivity in the presence of high external K+. This combination of mutations proved to be a new, sensitive and practical tool for characterizing the properties of heterologously expressed transporters mediating both the efflux and influx of alkali-metal-cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号