首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为了提高再生混凝土的力学及抗裂性能,在再生混凝土中掺入不同种类有机纤维进行试验,分析了再生混凝土的抗压强度、劈拉强度及其梁构件的初裂荷载、极限荷载、荷载—挠度等,结果表明,掺入不同种类有机纤维可以提高再生混凝土的力学及抗裂性能,其中掺入聚丙烯粗纤维的LRPP再生混凝土力学性能及其梁构件的抗裂性提高效果较为明显。  相似文献   

2.
PVA纤维混凝土弯折试验研究   总被引:7,自引:1,他引:6  
彭定超  袁勇 《混凝土》2004,12(1):46-51
混凝土的脆性以及抗裂能很差,在其中掺入合成纤维成为增加韧性、提高早期和极限抗拉强度以及改善诸如梁柱节点等重要部位的抗震性能的一种很重要的方法;作为合成纤维中的一种,新型的聚乙烯醇(PVA)纤维还具有高强高模的特性,能否兼有合成纤维与高弹性模量纤维的优点,是本文研究的重点。本文为增加混凝土韧性、提高混凝土抗拉强度的观点出发,对PVA纤维混凝土进行了6种纤维体积含量(0.00%、0.05%、0.15%、0.30%、0.50%、1.00%)、4种龄期(3天、7天、14天、28天)的标准四点弯曲试验,试验结果表明:无论哪种龄期,PVA纤维混凝土梁的韧性要比普通混凝土梁高,提高幅度基本随纤维含量的增加而增大;初期抗拉强度与极限抗拉强度在体积掺量超过0.5%后均有明显增加,小于此含量时,变化规律不很明显。无论哪种纤维含量,混凝土梁的韧性随龄期变化规律不是很明显;初期抗拉强度与极限抗拉强度在早龄期(3天)就达到相应最终强度(28天)的85%以上,并随龄期的增加而有所提高,但变化规律不很明显。  相似文献   

3.
PVA纤维混凝土梁的抗弯性能试验   总被引:2,自引:2,他引:2  
研究了纤维混凝土改性梁的抗弯性能,通过对不同配筋率和不同PVA纤维掺量的10根2.0 m长混凝土梁式构件的试验测试,研究混凝土混合料中加入PVA纤维后的增强与增韧作用效果.研究中对比了纤维含量对配筋混凝土受弯构件(包括零纤维掺量的对比构件)的初裂荷载、极限荷载、韧性和耗能等指标的影响,分析了PVA纤维在控制裂缝宽度以及增强变形性能方面的作用机理.试验研究结果表明,PVA纤维提高了构件的整体变形能力,但是对构件的初裂强度、极限强度影响不大.  相似文献   

4.
通过6块体外预应力玻璃纤维增强复合材料(GFRP)筋加固混凝土单向板的受弯试验,分析GFRP筋张拉应力和配筋率对混凝土单向板抗裂性能和挠度的影响。结果表明,随GFRP筋张拉应力和配筋率的增大,体外预应力GFRP筋混凝土单向板抗裂荷载提高25%~125%,跨中开裂挠度增加35%~159%,跨中屈服挠度增加21%~36%,跨中极限挠度降低13%~34%。结合本文体外预应力GFRP筋加固混凝土单向板和已有文献的体外预应力FRP筋混凝土梁试验结果,提出适合体外预应力FRP筋加固混凝土单向板和梁抗裂及刚度的计算方法。  相似文献   

5.
本文通过试验对比分析钢纤维混凝土不同层厚对层布式钢纤维再生混凝土梁的开裂荷载和极限荷载、破坏形态、荷载-应变曲线关系、挠度及最大裂缝宽度等性能的影响。试验结果表明:随着钢纤维混凝土层厚的增加梁的初裂荷载值先逐渐增大、后减小,其中在SF50组梁得到最大值。钢纤维的掺入对梁的承载力提高幅度不大,但可以延缓裂缝的出现,提高梁的延性和刚度。不同层厚钢纤维再生混凝土梁整体的应变沿梁高分布符合钢筋钢纤维混凝土叠合梁计算模型。随着钢纤维层厚的增加,破坏后的最大裂缝宽度相应变小。因此可知在再生混凝土梁的受拉区掺钢纤维能有效地提高抗裂性能,同时降低钢纤维使用量,改善混凝土性能。  相似文献   

6.
在混杂纤维(PVA、PP纤维)总掺量不变的情况下,研究了纤维混掺比例VPVA∶VPP(0∶5、1∶4、2∶3、3∶2、4∶1、5∶0)对混凝土工作性、力学性能和弯曲韧性的影响。结果表明:随着PVA纤维掺量的增加,混凝土的流动度降低,抗压强度和初裂荷载变化不大,抗折强度、峰值荷载、等效弯曲强度和等效弯曲韧性显著增大。  相似文献   

7.
研究了水灰比、纤维种类、掺量和水泥基材对挤压成型纤维水泥板及其复合梁的力学性能与耐久性能的影响。结果表明掺加纤维后板材韧性有显著改善;PVA纤维增强板材当纤维掺量达1.7%时表现应变硬化,出现多点开裂;PP纤维则呈现应变软化。两种纤维增强水泥基材料性能的差异是由于纤维自身性能的不同。以纤维增强板为底板,制作的纤维板/混凝土复合梁的极限荷载和相应挠度,与普通混凝土梁相比都得以改善;同时与普通混凝土梁相比,复合梁的抗氯离子渗透性能更好。  相似文献   

8.
粗合成纤维活性粉末混凝土抗弯韧性试验   总被引:1,自引:0,他引:1  
为研究不同粗合成纤维用量下活性粉末混凝土的抗弯韧性,采用四点弯曲试验对粗合成纤维用量分别为4.75,9.5,14.25,19kg·m-3的纤维活性粉末混凝土试件进行了研究,同时与不掺入纤维的素活性粉末混凝土进行了对比分析。结果表明:不掺入纤维的素活性粉末混凝土弯拉试件发生脆性破坏,试件一裂即断,未得到荷载-挠度曲线的下降段;而粗合成纤维掺入后能够提高活性粉末混凝土的韧性,使弯拉试件转变为明显的延性破坏,荷载-挠度曲线都可得到稳定的下降段,同时曲线还出现了二次强化现象,有2个峰值;随着粗合成纤维掺量的增加,弯拉试件荷载-挠度曲线的下降段愈加平缓,韧性指数增大;粗合成纤维掺量(体积分数)为1.0%~2.0%时,剩余强度在抗折强度的85%以上,此时粗合成纤维对裂后基体具有较强的阻裂能力,能够大大提高弯拉试件开裂后的韧性。  相似文献   

9.
为研究混凝土强度、复合梁黏结面处理方法和PVA纤维水泥基复合材料层厚度对PVA增强混凝土复合梁弯曲性能的影响,对十二组100 mm×100 mm×400 mm的复合梁试件进行了四点弯曲试验,分析了试件破坏过程和弯曲性能。结果表明,与基体强度C30的普通混凝土梁相比,随着PVA纤维水泥基复合材料层厚度的增加,复合梁的极限荷载提高了26.7%~48.4%;与基体强度C40的普通梁相比,随着PVA纤维混凝土层厚度的增加,复合梁的极限荷载提高了15.7%~46.6%;随着基体混凝土强度等级的提高,复合梁的极限承载力得到明显提升;复合梁黏结面进行凿毛处理对其极限荷载有所提高。  相似文献   

10.
为了降低机场道面混凝土脆性,通过混掺高性能粗聚烯烃纤维(PP)和细聚乙烯醇纤维(PVA)来提高道面混凝土韧性。通过四点弯曲试验,测得了梁试件荷载 挠度曲线,分析了2种纤维体积掺率混掺对改善三级配机场道面混凝土弯曲韧性的效果。结果表明:纤维混掺可明显改善混凝土抗弯韧性;PP的掺入使荷载 挠度曲线出现了2次峰值;PVA体积掺率为0.2%或0.4%时,随着PP掺率增加,韧性指标值P300,P75,P50均呈增大趋势;PP掺率的增加对后期韧性指标值P75,P50的提高更为显著;增加PVA掺率对提高第一峰值强度较为显著;PP和PVA分别以体积掺率1.1%和0.4%混掺时,机场道面混凝土抗弯韧性提高最为明显。  相似文献   

11.
田砾  毛新奇  李晓东  赵铁军 《混凝土》2006,(11):10-12,19
砂浆、混凝土等水泥基复合材料易于开裂、耐久性低劣的主要原因是其抗拉强度低、韧性差。高模量聚乙烯醇(PVA)纤维的添加可以增强水泥基材料的韧性,使其呈现准应变硬化和多微缝开裂特性,从而显著改善结构的耐久性。通过四点弯曲试验研究了PVA纤维体积掺量分别为0、0.75%、1.5%的抗折强度,按照ASTM方法确定了SHCC的弯曲韧度指数,通过JCI方法得到了SHCC的弯曲韧性系数。结果表明,最大抗弯承载力和最大挠度均随纤维掺量的增加而增加。结果可由纤维增强材料的应变硬化特性来解释。同时,与数值模拟结果的比较也证实了上述结论。  相似文献   

12.
钢纤维体积率对高强混凝土断裂性能的影响   总被引:1,自引:1,他引:0  
通过对相对切口深度为0.2、0.3、0.40、.5的钢纤维高强混凝土三点弯曲试验,研究钢纤维体积率对高强混凝土断裂性能的影响。结果表明:在相对切口深度为0.20、.3、0.4、0.5的条件下,随着钢纤维体积率的增大,钢纤维高强混凝土断裂韧度和断裂能均显著增加。通过对试验结果的统计分析,分别建立断裂韧度、断裂能与劈拉强度之间的关系式。  相似文献   

13.
为更好地掌握再生砖粉超高韧性水泥基复合材料(ECC)的工作性能和力学性能,为再生砖粉ECC的研究与推广提供依据与参考,通过试验研究了不同聚乙烯醇(PVA)纤维体积掺量对再生砖粉ECC流动性能及力学性能的影响.结果表明:再生砖粉全取代石英砂会在一定程度上削弱ECC的力学性能;随着PVA纤维体积掺量在1.25%~2.0%范...  相似文献   

14.
基于水利工程中对大粒径混凝土的防裂增韧要求,进行了二级配骨料钢纤维混凝土试件的劈拉试验,探讨了钢纤维体积率(钢纤维掺量)对混凝土劈拉强度的影响,提出丁提高钢纤维对混凝土劈拉强度影响系数的思路和劈拉强度的计算公式.结果表明:钢纤维对二级配混凝土劈托强度有良好的增强效果.  相似文献   

15.
按照《纤维混凝土试验方法标准》(CECS13:2009)中弯曲韧性和初裂强度的试验方法对聚乙烯醇纤维混凝土的力学性能进行试验,研究结果表明:聚乙烯醇纤维能略微提高混凝土的抗压强度,最佳掺量在1%以下;聚乙烯醇纤维能有效地改善混凝土立方体抗压变形能力,使混凝土由脆性破坏转换为有一定塑性的破坏形态;当聚乙烯醇纤维掺量在0.08%-0.2%时可明显改善混凝土的弯曲韧性;聚乙烯醇纤维也能在一定程度上提升混凝土的抗弯拉强度。  相似文献   

16.
利用实验室自制的蛋白类发泡剂,以普通硅酸盐水泥为结合剂,制备了粉煤灰-水泥基泡沫混凝土。探讨了聚乙烯醇纤维不同长度、掺量对表观密度为700~800kg/m3的泡沫混凝土吸水率、抗压抗折强度、劈裂抗拉强度、收缩率的影响。结果表明,聚乙烯醇纤维可显著增强泡沫混凝土的抗折强度,当纤维长度为12mm、体积率为0.23%时,28d抗折强度增大了43.24%;纤维体积率0.08%时,纤维长度为6mm的泡沫混凝土抗压抗折强度最高。  相似文献   

17.
This paper presents the results of a series of experiments conducted to investigate the effectiveness of fibre inclusion in the improvement of mechanical performance of concrete with regard to concrete type and specimen size. Lightweight aggregate concrete and limestone aggregate concrete with and without steel fibres were used in the study. The compressive strength of the concrete mixes varied between 90 and 115 MPa and the fibre content was 1% by volume. Splitting tests on prisms and three-point bending test on notched beams were carried out on specimens of varying sizes to examine the size effect on splitting strength, flexural strength and toughness.

The experimental findings indicate that the low volume of fibre has little effect on compressive strength but improve remarkably splitting tensile strength, flexural strength and toughness. The increase in splitting tensile strength, flexural strength and toughness index for lightweight concrete seems much higher than that of normal aggregate concrete.

The size effect on prism splitting tensile strength is not significant beyond a critical (transition) size. There are apparent size effects on flexural strength and toughness index. As the specimen size increases, splitting and flexural strengths appear to decrease, and fracture behaviour tends to be more brittle.  相似文献   


18.
钢筋超高性能混合钢纤维混凝土梁受剪性能研究   总被引:1,自引:0,他引:1  
刁波  封云  叶英华  杨松霖 《工业建筑》2012,42(11):6-10,15
自密实超高性能钢纤维混凝土具有高强、高韧、高流动性和高耐久性的优势,但其抗拉强度仍远低于抗压强度。通过静力加载试验,研究超高性能纤维混凝土梁的抗弯性能,以及配置550 MPa受拉纵筋时超高性能钢纤维混凝土无腹筋梁,在剪跨比分别为2.5、3时的受剪性能。试验梁的钢纤维体积率为2%,其中超细钢纤维和端弯钢纤维以3∶1比例混合,基体混凝土强度大于C100的强度,梁试件采取自密实成型和常温标准养护方法。试验结果表明:与无钢纤维混凝土梁相比,混合钢纤维超高性能混凝土梁的极限荷载和延性得到明显改善。无腹筋梁的初裂荷载提高了25%~180%、裂缝宽度0.2 mm时的荷载提高了73%~183%、极限荷载提高了68%~317%、延性提高了3.2倍~4.4倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号