首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用电泳法研究了伊朗轻质减压渣油和大庆减压渣油模拟乳状液的Zeta电位。研究表明,伊朗轻质减压渣油和大庆减压渣油乳状液的Zeta电位主要由摩擦、吸附和电离产生,并且Zeta电位值随馏分的增重而增加;当水相为纯水时,乳状液的Zeta电位为负值,其绝对值随馏分油相的质量浓度或油相中芳烃含量的增大而增加;随着水相pH的升高,模拟乳状液的Zeta电位由正电性逐渐向负电性转变;随水相中盐的加入,模拟乳状液的Zeta电位绝对值增加,电性不变。  相似文献   

2.
采用剪切界面粘度仪考察了伊朗轻质减压渣油超临界分离馏分的油-水界面粘度。结果表明,随着馏分的增重,油-水界面粘度增大。随着剪切速率的增大,界面膜结构被破坏,油-水界面粘度减小。油相中馏分质量分数以及水相中盐的增加,使得馏分的油-水界面吸附量增大,油-水界面粘度增大;油相中芳烃含量以及水相pH值的增大,改变了馏分在油-水界面的吸附状态,油水界面粘度减小。  相似文献   

3.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

4.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

5.
采用超临界萃取分离方法,将大庆减压渣油及伊朗轻质减压渣油按相对分子质量分割为两个系列共33个馏分。考察了它们的化学组成和界面张力,比较了两个系列减渣馏分在不同条件下油-水界面张力的变化规律。结果表明,大庆减渣馏分较伊朗轻质减渣馏分的芳香共轭结构和极性基团含量少,界面活性低。油相芳烃含量对两个系列油-水界面张力的影响不同,对大庆中间馏分的油-水界面张力影响大,而对伊朗轻质减渣中间馏分的影响小。水相因素对两个系列油-水界面张力的影响相似。水相中可溶性盐对油-水界面张力影响小,沉淀性盐对油-水界面张力影响大,对伊朗轻质减渣馏分的影响更明显。pH值对中间馏分油-水界面张力影响大,而对轻、重馏分影响小。  相似文献   

6.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油-水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油-水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油-水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油-水界面粘度有大幅度的增加。Tween40铺展吸附于油-水界面,其油-水界面粘度较大。Span80竖立吸附于油-水界面,其油-水界面粘度较小。Tween40取代减渣馏分铺展吸附于油-水界面,其油-水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油-水界面粘度降低。Span80楔人减渣馏分油-水界面吸附层,共同构成油-水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐减小。  相似文献   

7.
采用剪切界面粘度仪考察了大庆减压渣油超临界馏分(简称大庆减渣馏分)的油-水界面粘度。研究结果表明,大庆减渣馏分油-水界面粘度随馏分的增重、油相中值分质量分数的增加以及水相中盐含量的增加而增大,随剪切速率的增大而降低。大庆减渣馏分中蜡含量多。对馏分的油-水界面粘度的影响大,油-水界面粘度受馏分中界面活性物质(胶质、沥青质)和蜡的共同影响。轻馏分油-水界面粘度随油相中芳烃含量的增加而增大。当油相煤油与苯体积比为1:1时,重馏分油-水界面粘度最大。碱性条件下,馏分油-水界面粘度最低。酸性条件对轻、重馏分的油-水界面粘度的影响不同,随着酸度的升高,轻馏分的油-水界面粘度下降,重馏分的油-水界面粘度上升。  相似文献   

8.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油 水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油 水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油 水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油 水界面粘度有大幅度的增加。Tween40铺展吸附于油 水界面,其油 水界面粘度较大。Span80竖立吸附于油 水界面,其油 水界面粘度较小。Tween40取代减渣馏分铺展吸附于油 水界面,其油 水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油 水界面粘度降低。Span80楔入减渣馏分油 水界面吸附层,共同构成油 水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐减小。  相似文献   

9.
采用Langmuir-Blodgett(L-B)技术考察了伊朗轻质减渣馏分的L-B性质(πA曲线,膜稳定曲线),扩散相中减渣馏分的体相质量浓度和在扩展溶剂甲苯-庚烷中芳烃含量,以及水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,随着馏分的增重,伊朗轻质减渣馏分由竖立吸附状态逐渐倒伏直至铺展吸附于水相表面,馏分分子所占面积逐渐增大,膜性质随之发生变化。随着馏分体相质量浓度的增大,馏分分子以缔合体形式成膜,其中轻馏分分子缔合体较小,重馏分分子缔合体较大。随着扩散相中芳烃含量的增大,轻馏分分子以收缩状态成膜,重馏分分子以铺展状态成膜;而随着扩散相中芳烃含量的降低,轻馏分分子以铺展状态成膜,重馏分分子以缔合状态成膜。由于水相中Ca^2 离子可与馏分中酸性基团反应,使得馏分分子充分铺展吸附于水相表面或使馏分分子间相互联结,其所占水相表面积增大。  相似文献   

10.
采用超临界萃取分离技术对伊朗重质减压渣油按相对分子质量进行了分割。所得伊朗重质减渣馏分按馏分的先后,其平均相对分子质量逐渐增大,H/C原子比逐渐下降,芳香共轭成分含量逐渐升高。对各减渣馏分的油-水界面张力研究表明,伊朗重质减渣馏分具有高的界面活性,随着减渣馏分在油相中质量分数的增大,油-水界面张力显著下降。通过改变减渣馏分的界面吸附状态和吸附量,油相组成、水相中盐的含量及pH值的变化会影响油-水界面张力。  相似文献   

11.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

12.
以减压渣油为原料,采用热解色谱和热重质谱,考察了无序介孔硅铝材料(JSA)的酸性和孔径对其接触裂化性能的影响。结果表明:在一定的剂/油质量比条件下,当JSA的孔径相近时,随着JSA中弱B酸酸量和总酸量的增加,减压渣油的初始裂化温度逐渐降低,裂化能力增强,裂化产物中汽、柴油馏分的相对质量分数增大,C20+馏分相对质量分数减小;同时,减压渣油接触裂化的生焦率低,JSA上积炭的起始燃烧温度逐渐升高;在酸性相当条件下,JSA孔径小于15.85 nm时,孔径的变化对减压渣油起始裂化温度、裂化产物分布、生焦率、接触剂上的积炭影响不明显;JSA孔径增至15.85 nm以上时,C20-馏分相对质量分数减小,C20+馏分相对质量分数增大。  相似文献   

13.
采用Langmuir-Blodgett(L-B)技术研究了大庆减渣馏分的L-B性质(πA曲线,膜稳定曲线),以及减渣馏分在扩散相中的体相质量浓度和芳烃含量、水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,由于大庆减渣馏分中的蜡含量高,其在水相表面成膜压缩性较好,各馏分的,πA曲线形状相似。馏分体相质量浓度增大,馏分以缔合体形式成膜,缔合体结构越大,πA曲线左移越大。扩展溶剂中芳烃含量的变化对馏分中胶质、沥青质及蜡的分散状态影响不同。随着扩展溶剂中芳烃含量的增大,轻馏分中蜡质的成分多,对应,πA曲线左移;重馏分以沥青质为主,对应,πA曲线右移。馏分可吸附水相中的同性离子而相互排斥,同时,水相中碱或Ca^2 抖离子也可与馏分中的酸性基团反应,使馏分充分铺展吸附于水相表面或馏分间相互联结,以至馏分分子所占水相表面积增大,对应的,πA曲线右移。膜稳定性曲线先下降然后趋于稳定,反映出大庆减渣馏分膜结构中存在不稳定结构。  相似文献   

14.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

15.
运用超临界流体萃取分馏技术,对两种中东原油(沙特轻质原油与阿曼原油)的减压渣油进行分离,测定与分析了窄馏分的折光指数、密度、粘度、残炭、平均相对分子质量、元素分析(C、H、S)、金属含量(Ni,V)、族组成(饱和烃、芳香烃和胶质含量)及结构组成。并与大庆、辽河原油的减压渣油分离结果进行了对比,为沙特轻质原油及阿曼原油的减压渣油的合理加工提供了重要的基础数据。  相似文献   

16.
对于孤岛减压渣油超临界流体萃取精密分馏分所得的窄馏分,在5个不同的升温速率下进行了热重法研究。对所获实验数据运用Fried-man法进行处理,求出了各窄馏分在9个不同转化深度下的动力学参数值。结果表明,对于每一个窄馏分来说,随着转化深度的增大,活化能亦增加;而在同一转化深度下,随着各窄馏分分子量的增大及其结构中芳碳率和芳环数的提高,裂解活化能亦呈增大趋势。  相似文献   

17.
减压渣油与超临界亚组分的元素组成及SARA分析   总被引:2,自引:0,他引:2  
用正戊烷为溶剂,在超临界条件下将6种国内与2种国外减压渣油分离成不同的宽馏分和窄馏分,测试了它们的残炭值,SARA及元素组成。结果表明,渣油的残炭值与氢碳比密切相关;各种渣油的元素和化学组成的含量及分布是有差别的;镍倾向于分布在重组分中,孤岛和辽河渣油最为明显;大庆,华北渣油为低硫,高氮原油,氮和硫在渣中中分布平均;  相似文献   

18.
利用超临界流体萃取分馏技术,对哈萨克斯坦减压渣油进行评价。将哈萨克斯坦减压渣油分离成8个窄馏分,对各窄馏分的密度、残炭、粘度、折光率、H/C、平均相对分子质量等物理性质及元素(硫、氮)、铁、镍、钒含量进行分析并作图,呈现规律性变化;并对窄馏分的平均沸点进行预测,得出第八个馏分的沸点达到1066K。通过实验可知,窄馏分性质可以对中比收率进行拟合,进而进行化学转化性能的研究,为二次加工哈萨克斯坦减压渣油提供基础数据和信息。  相似文献   

19.
采用超临界流体萃取分馏技术,将伊朗和沙轻减压渣油混合油分离成6个窄馏分和1个萃余残渣,对窄馏分的组成分布和结构进行了研究,为STRONG沸腾床加氢原料的结构提供重要基础数据。结果表明,随着窄馏分收率的增加,饱和分质量分数减小,胶质质量分数增大,芳香分质量分数逐渐增大,各窄馏分中基本不含沥青质,残炭值、硫和氮及金属元素含量逐渐增加,氮和金属在最后几个窄馏分和残渣中有富集现象。用改进的Brown-Ladner法计算了各个窄馏分和原料的结构参数,预测了窄馏分的二次加工性能,对特征化参数与窄馏分的性质进行了关联。建立了伊朗和沙轻减压渣油混合油窄馏分残炭值、芳碳率、与特征化参数之间的关联式。  相似文献   

20.
对大庆、大港、孤岛、胜利、华北、沙特6种减压渣油的宽、窄馏分实验数据进行回归分析,得到几组减压渣油物性关联式。在此基础上选定减压渣油的特征性质,借助BP模型神经计算的非线性拟合能力,在行为水平上进行建模与仿真。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号