首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper evaluates the effect of industry segment, year, and US region on electricity consumption per employee, per dollar sales, and per square foot of plant area for wood products industries. Data was extracted from the Industrial Assessment Center (IAC) database and imported into MS Excel. The extracted dataset was examined for outliers and abnormalities with outliers outside the quantile range 0.5–99.5 dropped from the analysis. A logarithmic transformation was applied to eliminate the skewness of the original data distributions. Correlation measurements indicated a moderate association between the response variables; therefore, a multivariate analysis of variance test was performed to measure the impact of the three factors: industry type, year, and region, simultaneously on all response variables. The results indicated some effect associated with all three factors on the three measures of electricity consumption. Subsequently, univariate ANOVA tests were conducted to determine the levels of the factors that were different. Most levels of industry type were associated with significantly different energy consumption, an expected result since some of the industries are more energy intensive than others. The industries in Standard Industry Code (SIC) 2493 (reconstituted wood products) are the groups with the highest electricity consumption with means of 38,096.28 kWh/employee, 0.86 kWh/sales, and 154.14 kWh/plant area while industries grouped in SIC 2451 (mobile homes) have the smallest consumption with means of 6811.01 kWh/employee, 0.05 kWh/sales, and 9.45 kWh/plant area. Interestingly, differences in regional consumption were found to be linked to the proportion of industry types by region. Data analysis also indicated differences in electricity consumption per employee for the factor year, but for the other response variables, no differences were found. These main results indicate that industries in the wood products sector have different electricity consumption rates depending on the type of manufacturing processes they use. Therefore, industries in this sector can use these comparisons and metrics to benchmark their electricity consumption as well to understand better how electricity costs might vary depending on the region they are located.  相似文献   

2.
Hospital energy consumption is relatively high, while saving energy and reducing cost comprise one of the most important challenges considered by the majority of building designers, engineers, and decision makers. An end-use energy analysis was conducted in a large-scale hospital in Malaysia to identify energy apportioning and energy end use in the areas of air conditioning, lifts, lighting, equipment, and others. The analysis was carried out by assessing the collected desktop and field data as well as some calculations. The Building Energy Index (BEI) was calculated to compare the consumption levels in the selected hospital, which is a typical hospital building, with other hospitals in Malaysia as well as low energy buildings and Malaysian standards. The main energy source in this case study was electricity with a supply of around 75 % of total energy consumption. The current average annual electricity consumed by this hospital was 44,637,966 kWh, out of which 63 % was used by air conditioning systems and 17 % by lighting. The BEI comparison revealed that the calculated BEI of 384 kWh/m2/year is significantly higher than Malaysian rating systems and standards which recommend 200 kWh/m2/year for hospitals, 135 kWh/m2/year for commercial sectors, and is higher than previously observed hospitals with a BEI of less than 300 kWh/m2/year.  相似文献   

3.
Positive energy residential buildings are houses that generate more energy from renewable sources than they consume while maintaining appropriate thermal comfort levels. However, their design, construction and operation present several critical challenges. In particular, the considerable load reductions are not always compatible with the increased level of comfort expected in modern houses. Tropical climates, meanwhile, should be more amenable to the implementation of positive energy houses for two reasons. Firstly, negligible heating is generally required as compared to colder climates, where the heating energy requirements are considerable. Then, renewable energy resources are usually abundant in tropical climates. This paper investigates the feasibility of positive energy residential buildings in the tropical island of Mauritius. A baseline model representing a typical Mauritian house is designed using DesignBuilder software. The energy efficiency of the model is then optimised by investigating a whole range of passive building design strategies, many of them adapted from vernacular architecture. Results reveal that the application of passive strategies such as shading, insulation and natural ventilation have precluded the need for artificial cooling and ventilation in the positive energy (PE) house. The resulting electricity consumption of the house decreases from 24.14 to 14.30 kWh/m2/year. A 1.2 kW photovoltaic system provides the most cost-effective solution to exceed the annual electricity requirements of the house.  相似文献   

4.
In an attempt to fill a significant gap in baseline information, 509 households have been studied to analyse the residential consumption patterns in the urban environment in Lebanon. The average annual household energy consumption has been found to be 6907 kWh, whereas per capita consumption is 1727 kWh. Seasonal and monthly variations are analysed indicating increased energy consumption in the summer months accounting for 28% of total annual consumption. Correlations are indicated for energy consumption with apartment price, area, income and number of residents. Multiple regression analysis indicated statistical significance of income, area and number of residents to the energy consumption. Based on current consumption and electricity generating technologies, 1.6 tons of CO2, 7.3 kg of SO2 in addition to other pollutants are generated per resident. Comparative analysis indicates that Lebanon has electricity consumption similar to that of Western Europe, paving the way for significant energy saving potential. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
With increase in demand for electricity at 7.5% per year, the major concern of Saudi Arabia is the amount of CO2 being emitted. The country has the potential of generating 200×106 kWh from hydrothermal sources and 120×106 terawatt hour from Enhanced Geothermal System (EGS) sources. In addition to electricity generation and desalination, the country has substantial source for direct application such as space cooling and heating, a sector that consumes 80% of the electricity generated from fossil fuels. Geothermal energy can offset easily 17 million kWh of electricity that is being used for desalination. At least a part of 181,000 Gg of CO2 emitted by conventional space cooling units can also be mitigated through ground-source heat pump technology immediately. Future development of EGS sources together with the wet geothermal systems will make the country stronger in terms of oil reserves saved and increase in exports.  相似文献   

6.
The percent of energy consumed by plug load equipment in commercial buildings is on the rise. Research conducted in the past has included surveying plug load equipment, measuring plug load electricity consumption and equipment operating patterns, and studying plug load reduction solutions in office buildings, but plug load energy use across other building types is poorly understood. A university campus, which houses many building types, presents a unique opportunity to understand plug load profiles across building types. In this study, an equipment inventory was performed in 220 buildings on Stanford University’s campus, totaling 8,901,911 ft2 of building space and encompassing lab buildings, office buildings, recreation facilities, public space, and service buildings. Within these buildings, 110,529 pieces of plug load equipment were recorded. Energy consumption estimates were developed from published values and used to evaluate the aggregate plug load energy consumption of this equipment by equipment type and by building type. In total, it is estimated that the plug loads from these buildings consume nearly 50 million kWh per year and comprise 32% of the electricity consumption of the buildings surveyed. This data can be used to better target energy conservation efforts throughout multiple sectors.  相似文献   

7.
The environmental analysis of public nursery schools is of great interest since they are crucial in the early education of children and are expected to show high environmental standards. This paper aims to analyse the environmental profile (energy, water and transport flows) of this sector. A sample of 12 public nursery schools belonging to the Scholar Agenda 21 (SA21) of the city of Barcelona were selected given their data quality (eight centres applied to all analysis) to determine their energy and water consumption, as well as the greenhouse gas emissions resulting from energy consumption and transport use. For each centre, energy and water consumption were obtained from bills and surveys were conducted to get data regarding the transport associated with the centre. Results show that, on average, a child consumes 966 kWh of energy (electricity and gas) and 12.9 m3 of potable water every year. Nursery schools with more energy-efficient devices hold lower energy consumption, a trend which could not be found in the case of water and water-efficient devices. Regarding transport, car usage was the flow with highest impact, since it accounts for 69 % of CO2eq emissions, although only 19 % of the children commute by car.  相似文献   

8.
The building energy performance improvement of large-scale public buildings is very important to release China’s energy shortage pressure. The aim of the study is to find out the building energy saving potentials of large-scale public and commercial buildings by energy audit. In this paper, the energy consumption, energy performance, and audit were carried out for a typical commercial mall, the so-called largest mall in Asia, located in a hot-summer and warm-winter climate zone. The total annual energy consumption reaches 210.01 kWh/m2, of which lighting energy consumption accounts for 30.03 kWh/m2 and the lift and elevator energy consumption accounts for 40.46 kWh/m2. It is by far higher than that of the average building energy consumption in the same category. However, the annual heating, ventilation, and air-conditioning (HVAC) energy consumption is only 87.19 kWh/m2 even though they run 24/7. It proves that the energy performance of the HVAC system is good. Therefore, the building energy savings potential mainly relies on reducing the excessive usage of lighting, lifts, and elevators.  相似文献   

9.
A feasibility study exploring the use of geothermal energy in hydrogen production is presented. It is possible to use a thermal energy to supply heat for high temperature electrolysis and thereby substitute a part of the relatively expensive electricity needed. A newly developed HOT ELLY high temperature steam electrolysis process operates at 800 – 1000°C. Geothermal fluid is used to heat fresh water up to 200°C steam. The steam is further heated to 900°C by utilising heat produced within the electrolyser. The electrical power of this process is reduced from 4.6 kWh per normalised cubic meter of hydrogen (kWh/Nm3 H2) for conventional process to 3.2 kWh/Nm3 H2 for the HOT ELLY process implying electrical energy reduction of 29.5%. The geothermal energy needed in the process is 0.5 kWh/Nm3 H2. Price of geothermal energy is approximately 8–10% of electrical energy and therefore a substantial reduction of production cost of hydrogen can be achieved this way. It will be shown that using HOT ELLY process with geothermal steam at 200°C reduces the production cost by approximately 19%.  相似文献   

10.
Status of geothermal energy amongst the world's energy sources   总被引:1,自引:0,他引:1  
The world primary energy consumption is about 400 EJ/year, mostly provided by fossil fuels (80%). The renewables collectively provide 14% of the primary energy, in the form of traditional biomass (10%), large (>10 MW) hydropower stations (2%), and the “new renewables” (2%). Nuclear energy provides 6%. The World Energy Council expects the world primary energy consumption to have grown by 50–275% in 2050, depending on different scenarios. The renewable energy sources are expected to provide 20–40% of the primary energy in 2050 and 30–80% in 2100. The technical potential of the renewables is estimated at 7600 EJ/year, and thus certainly sufficiently large to meet future world energy requirements. Of the total electricity production from renewables of 2826 TWh in 1998, 92% came from hydropower, 5.5% from biomass, 1.6% from geothermal and 0.6% from wind. Solar electricity contributed 0.05% and tidal 0.02%. The electricity cost is 2–10 US¢/kWh for geothermal and hydro, 5–13 US¢/kWh for wind, 5–15 US¢/kWh for biomass, 25–125 US¢/kWh for solar photovoltaic and 12–18 US¢/kWh for solar thermal electricity. Biomass constitutes 93% of the total direct heat production from renewables, geothermal 5%, and solar heating 2%. Heat production from renewables is commercially competitive with conventional energy sources. Direct heat from biomass costs 1–5 US¢/kWh, geothermal 0.5–5 US¢/kWh, and solar heating 3–20 US¢/kWh.  相似文献   

11.
This paper investigates the influence of the domestic hot water load profiles and the collector's technology (Flat Plate FPC, Evacuated Tube ETC and Compound Parabolic CPC) on the performance of forced circulation solar water heaters operating under various climatic conditions. For this end, a typical single family house composed of five occupants located in Morocco was considered. It is found that, the solar fraction can reach annual average values of 80% especially in areas with high solar energy potential. For a fixed consumption profile, the simulations showed that the installations with FPC, ETC and CPC can consume about 1644, 1199 and 1481 kWh/year of auxiliary energy, respectively. Moreover, it is found that, adapting the consumption profile, can save approximately 43 kWh/year for FPC, 13 kWh/year for ETC and about 29 kWh/year for CPC of energy.  相似文献   

12.
The US manufacturing sector, which consists of industries that produce durable and nondurable goods, accounts for about 30 % of all the final energy consumed in the country. In this study, manufacturing sector data coming primarily from the Annual Survey of Manufacturers are used to estimate the total impact of one mode of energy efficiency policy, market persuasion programs, on aggregate electricity consumption and energy expenditures. Using a panel model consisting of data for 184 industries, the findings indicate that the cumulative effects since 2002 of this policy mode is a reduction in 2010 electricity consumption of 5.4 %, of electricity expenditures of 2.4 %, and of all other fuel expenditures of 5.7 %. These estimates are derived after controlling for changes in output, other production inputs, and economic conditions. Particular attention in this study is given to the effects of a permanent shift in demand, and temporary business cycle shock, on model external validity.  相似文献   

13.
The present paper deals with the hydrogen liquefaction with absorption precooling cycle assisted by geothermal water is modeled and analyzed. Uses geothermal heat in an absorption refrigeration process to precool the hydrogen gas is liquefied in a liquefaction cycle. High-temperature geothermal water using the absorption refrigeration cycle is used to decrease electricity work consumption in the gas liquefaction cycle. The thermoeconomic optimization procedure is applied using the genetic algorithm method to the hydrogen liquefaction system. The objective is to minimize the unit cost of hydrogen liquefaction of the composed system. Based on optimization calculations, hydrogen gas can be cooled down to ?30 °C in the precooling cycle. This allows the exergetic cost of hydrogen gas to be reduced to be 20.16 $/GJ (2.42 $/kg LH2). The optimized exergetic cost of liquefied hydrogen is 4.905 $/GJ (1.349 $/kg LH2), respectively.  相似文献   

14.
Concentrating solar power plants represent low cost and efficient solutions for renewable electricity production only if adequate thermal energy storage systems are included. Metal hydride thermal energy storage systems have demonstrated the potential to achieve very high volumetric energy densities, high exergetic efficiencies, and low costs. The current work analyzes the technical feasibility and the performance of a storage system based on the high temperature Mg2FeH6 hydride coupled with the low temperature Na3AlH6 hydride. To accomplish this, a detailed transport model has been set up and the coupled metal hydride system has been simulated based on a laboratory scale experimental configuration. Proper kinetics expressions have been developed and included in the model to replicate the absorption and desorption process in the high temperature and low temperature hydride materials. The system showed adequate hydrogen transfer between the two metal hydrides, with almost complete charging and discharging, during both thermal energy storage and thermal energy release. The system operating temperatures varied from 450 °C to 500 °C, with hydrogen pressures between 30 bar and 70 bar. This makes the thermal energy storage system a suitable candidate for pairing with a solar driven steam power plant. The model results, obtained for the selected experimental configuration, showed an actual thermal energy storage system volumetric energy density of about 132 kWh/m3, which is more than 5 times the U.S. Department of Energy SunShot target (25 kWh/m3).  相似文献   

15.
The aim of this study is to develop an industrial ecosystem whereby wastes/products from a Post-combustion CO2 Capture (PCC) plant are utilised in a hydrogen biorefinery. Subsequently, five hydrogen biorefinery models are developed that use PCC's model amine i.e. monoethanolamine (MEA) as a nitrogen source during microbial hydrogen production and CO2 as a process chemical. Technical evaluations of the five case models are carried out to identify the ones that maximise value by multiproduct generation from biomass and fulfil total/partial parasitic energy demand. The case meeting these criteria, produces 3.1t of succinylated lignin adhesive, 4.9t of dry compost and 2744 kWh of electricity from 10t (dry) of sawdust feedstock, daily. Its daily power and heat duties stand at 3906 kWh and 52.1 GJ respectively. Simulations also demonstrate biohydrogen's potential as an energy storage vector for peak/backup power with an annual 1001.4 MWh of power storage capacity from 10t/d feedstock.  相似文献   

16.
To analyze the effect of energy conservation policies on energy consumption of residential buildings, the characteristics of energy consumption and indoor thermal comfort were investigated in detail in Tianjin, China, based on official statistical yearbook and field survey data. A comprehensive survey of 305 households indicates that the mean electricity consumption per household is 3215 kWh/a, in which annual cooling electricity consumption is 344 kWh/a, and the mean natural gas consumption for cooking is 103.2 m3/a. Analysis of 3966 households data shows that space heating average intensity of residential buildings designed before 1996 is 133.7 kWh/(m2·a), that of buildings designed between 1996 and 2004 is 117.2 kWh/(m2·a), and that of buildings designed after 2004 is 105.0 kWh/(m2·a). Apparently, enhancing the performance of envelops is effective in reducing space heating intensity. Furthermore, the results of questionnaires show that 18% of the residents feel slightly warm and hot respectively, while 3% feel slightly cold in winter. Therefore, the electricity consumption in summer will rise for meeting indoor thermal comfort.  相似文献   

17.
The investment in the hydrogen infrastructure for hydrogen mobility has lately seen a significant acceleration. The demand for energy and cost efficient hydrogen liquefaction processes has also increased steadily. A significant scale-up in liquid hydrogen (LH2) production capacity from today's typical 5–10 metric tons per day (tpd) LH2 is predicted for the next decade. For hydrogen liquefaction, the future target for the specific energy consumption is set to 6 kWh per kg LH2 and requires a reduction of up to 40% compared to conventional 5 tpd LH2 liquefiers. Efficiency improvements, however, are limited by the required plant capital costs, technological risks and process complexity. The aim of this paper is the reduction of the specific costs for hydrogen liquefaction, including plant capital and operating expenses, through process optimization. The paper outlines a novel approach to process development for large-scale hydrogen liquefaction. The presented liquefier simulation and cost estimation model is coupled to a process optimizer with specific energy consumption and specific liquefaction costs as objective functions. A design optimization is undertaken for newly developed hydrogen liquefaction concepts, for plant capacities between 25 tpd and 100 tpd LH2 with different precooling configurations and a sensitivity in the electricity costs. Compared to a 5 tpd LH2 plant, the optimized specific liquefaction costs for a 25 tpd LH2 liquefier are reduced by about 50%. The high-pressure hydrogen cycle with a mixed-refrigerant precooling cycle is selected as preferred liquefaction process for a cost-optimized 100 tpd LH2 plant design. A specific energy consumption below 6 kWh per kg LH2 can be achieved while reducing the specific liquefaction costs by 67% compared to 5 tpd LH2 plants. The cost targets for hydrogen refuelling and mobility can be reached with a liquid hydrogen distribution and the herewith presented cost-optimized large-scale liquefaction plant concepts.  相似文献   

18.
The performance of a novel electro-reformer for the production of hydrogen by electro-reforming alcohols (methanol, ethanol and glycerol) without an external electrical energy input is described. This tandem cell consists of an alcohol fuel cell coupled directly to an alcohol reformer, negating the requirement for external electricity supply and thus reducing the cost of operation and installation. The tandem cell uses a polymer electrolyte membrane (PEM) based fuel cell and electrolyser. At 80 °C, hydrogen was generated from methanol, by the tandem PEM cell, at current densities above 200 mA cm−2, without using an external electricity supply. At this condition the electro-reformer voltage was 0.32 V at an energy input (supplied by the fuel cell component) of 0.91 kWh/Nm3; i.e. less than 20% of the theoretical value for hydrogen generation by water electrolysis (4.7 kWh/Nm3) with zero electrical energy input from any external power source. The hydrogen generation rate was 6.2 × 10−4 mol (H2) h−1. The hydrogen production rate of the tandem cell with ethanol and glycerol was approximately an order of magnitude lower, than that with methanol.  相似文献   

19.
Geothermal energy is the energy contained as heat in the Earth’s interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earth’s heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment.Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 MWe (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 10–17%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 2–10 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources.The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 MWt (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 1973–1992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.  相似文献   

20.
This paper compares the performance of a 2.02 kWp off-grid residential solar photovoltaic (PV) power system using PVSYST simulation software for a household in Kunming, Yunnan province, China. The monthly available solar energy; missing energy; array, final, and reference yields, performance ratio; and array capture and system losses were analyzed for five solar tracking modes: fixed tilted plane, seasonal tilt adjustment, horizontal axis tracking, vertical axis tracking, and dual axis tracking. Although there were some similar aspects across the five systems, minimum available solar energy (2461 kWh/y) and maximum missing energy (134.68 kWh/y) were obtained using the fixed tilted plane system (tilt angle = 25°, azimuth angle = 0°), whereas maximum available solar energy (3081 kWh/y) and minimum missing energy (48.53 kWh/y) in October were obtained using the dual axis tracking system. Average monthly performance ratio was maximal for the fixed tilted plane system (0.689), and minimal for the dual axis tracking system (0.596).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号