首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.  相似文献   

2.
ABSTRACT

This paper proposes a grid-tie PV inverter that is able to improve power quality under conditions of both distorted and unbalanced source voltage. The presented strategy is based on the instantaneous power theory and uses a second-order generalized integrator-quadrature signal generator (SOGI-QSG). The presented control strategy is aimed at compensating reactive power, eliminating current harmonics, load balancing, and enabling the PV to inject maximum power to the grid. The advantages of the control system are the use of SOGI-QSG adaptive filter and frequency-locked loop (FLL), and removing the low-pass filter and phase-locked loop (PLL). DC–DC and DC–AC converters are utilized for connecting the PV to the grid. The DC–DC and DC–AC converters are responsible for maximum PV power tracking and achieving the control aims, respectively. Using 4-leg converter structure for grid-tie inverter enables achieving the control objectives in 3-phase 4-wire distribution network without any transformer. The presented control strategy is applied to a 3-phase 4-wire distribution network and is simulated in MATLAB/SIMULINK environment. The results of this simulation are then compared with the conventional instantaneous power method in areas including load balancing, reactive power compensation and the elimination of current harmonics, under unbalanced and distorted source voltage conditions.  相似文献   

3.
一种智能型光伏发电逆变器设计   总被引:2,自引:1,他引:1  
研制了一种智能的光伏发电逆变器,它既可以与电网并网又可以独立运行.当它与大电网并网时,采用电压电流双闭环的控制策略,以电流源的形式输出电能;当大电网断开出现孤岛时,它采用电压有效值外环瞬时值内环的闭环控制并进行模糊自调整PI参数,以电压源的形式输出电能.最后在光伏发电实验平台上验证了该方法的有效性.  相似文献   

4.
An integrated microgrid with a novel shunt active power filter (APF) using Elman neural network (ENN) is proposed in this study. The microgrid consists of a storage system, a photovoltaic (PV) system, the shunt APF, a linear load, and a nonlinear load. Moreover, the master/slave control algorithm is adopted in the microgrid. The storage system, which is considered as the master unit, is adopted to control the active and reactive power outputs (P/Q control) in grid-connected mode and the voltage and frequency of the microgrid (V/f control) in islanded mode. Furthermore, the PV system is considered as the slave unit to implement P/Q control in both grid-connected and islanded modes. In addition, the proposed shunt APF possesses dual functions of voltage and current harmonic compensation for microgrid under voltage harmonic propagation and nonlinear load to reduce the voltage and current total harmonic distortions (THD) effectively. Additionally, an ENN controller is adopted in the proposed shunt APF to improve the transient and steady-state responses of DC-link voltage during the switching between the grid-connected mode and islanded mode. Finally, some simulation results are provided to verify the feasibility and the effectiveness of the integrated microgrid with the intelligent controlled shunt APF.  相似文献   

5.
Abstract

This paper presents a frequency‐dependent droop scheme for paralleling UPS inverters with no control interconnection, so the inverters can be tightly connected with the load. At the fundamental frequency, the reference voltage of the inverter is generated as a reactor connected between the inverter and the load. The intention is to control the real and reactive power sharing of inverters with the QV and P‐ω droop scheme employed in the power system without needing a true transfer reactor. At the harmonic frequency, the reference voltage is generated as a resistor connected between the inverter and the load. The intention is that the load harmonic current can be shared equally and the voltage waveform distortion will be low. Two 1KVA single‐phase inverters are designed and implemented, some simulation and experimental results are provided for demonstrating the effectiveness of the proposed approach.  相似文献   

6.
A single-stage, complex frequency-modulated (CFM), high-frequency-driven electronic ballast for high-intensity-discharging (HID) lamps is proposed. The presented ballast combines a power-factor-correction (PFC) converter with a half-bridge series-resonant parallel-loaded inverter as well as a CFM controller. The switching frequency of the integrated inverter is non-periodically modulated by the CFM signal that integrates DC-bus voltage ripples with an additional high-frequency sine-wave signal. Compared with constant-frequency and frequency-modulated (FM) control, the presented ballast offers a widely continuous power spectrum of lamp current with decreased amplitude in order to effectively expand the lamp power as well as reducing sideband frequencies and allowing for a much lower energy level of the eigen frequency that supplies the lamp. Because of its CFM operation, no acoustic resonance occurs; additionally, the obtained results include a 13 dBm reduction of power spectrum at the centre switching frequency compared with FM control, and a 22 dBm reduction compared with constant-frequency control. The ballast offers high power factor (0.99), high efficiency (90%), cost-effectiveness and a simple, easy-to-implement controller. A prototype ballast utilising the CFM control method with 110 V utility-line input voltage has been built, and experimental results were carried out on three different brands of 70 W metal-halide-type HID lamps  相似文献   

7.
A new control technique is presented for the AC grid connection of distributed generation and parallel-connected inverters. The proposed control technique is based on a modification of the power angle droop control method and uses only locally measured feedback signals. An improvement in transient response, including large step transients, is achieved since the coupling filter parameters are taken into consideration when deriving the power angle of a droop controller. Unlike conventional techniques, the proposed technique is stable and minimises the active and reactive power swing for large load changes. The method achieves good active and reactive power sharing and minimises circulating current between parallel connected units and the grid connection, for both linear and nonlinear loads. Improved transient response is obtained while maintaining power-sharing precision, or output voltage and frequency accuracy. Simulation and experimental results validate that performance is better than that attained with conventional droop- based approaches.  相似文献   

8.
随着电力电子技术的发展,交流变频调速系统以其强大的优势逐渐取代传统的直流调速传动,其在给人们生产生活带来方便和效率的同时,也造成了电力系统谐波污染加重的问题。因此,设计了一种开环正弦脉宽调制(sinusoidal pulse width modulation,SPWM)控制的交流变频调速系统并搭建仿真模型,实现了对系统中变频器输出电压频率和幅值及电机转速的灵活控制。对系统网侧电压和电流进行了谐波特性分析,结果表明:网侧电压的波形比较理想、畸变很小,而电流波形畸变严重;且随着变频器输出频率的增加,电压波形畸变程度有所加剧,电流畸变程度有所减轻。  相似文献   

9.
当微电网中三相负载呈现不平衡状态时,会导致三相输出电压不平衡,若采用三相四桥臂逆变器,则可解决此问题。但在dq0旋转坐标系下,三相四桥臂逆变器输出电压和输出电流会相互耦合。同时若系统中出现负载不平衡工况,直接采用开环控制,因不平衡负载导致输出电压中含有二倍频扰动,所以负载端输出电压仍然处于不平衡状态。针对上述2个问题,建立了三相四桥臂逆变器对应的数学模型,推导被控对象开环传递函数,对三相不平衡问题进行了深入分析。同时根据系统模型信息,设计二阶自抗扰控制器,目的是对dq轴电压、电流进行解耦,同时可以减少测量原件的个数。并针对由不平衡负载产生的二倍频扰动引入比例谐振控制器,最后通过Matlab/Simulink仿真,验证了该解决方案的有效性。  相似文献   

10.
针对规模化风电并网对系统调频造成的不确定性问题,提出了一种计及风电不确定性的云模型负荷频率控制策略。首先将风电出力作为扰动信号,与联络线功率偏差组成的区域控制偏差作为负荷频率控制器的输入量,根据云模型规则发生器建立了具有不确定性映射关系的云(比例-积分,PI)负荷频率控制器。以含有风电的三区域互联电网为例,通过某区域电网实测运行数据仿真分析表明,所建立的云PI控制器能够较好地跟踪风电功率波动,具有较强的抗干扰性。所提方法不仅满足了风电接入对电网调频的要求,而且控制效果明显优于传统PI控制器。  相似文献   

11.
Nowadays, the single state inverter for the grid-connected photovoltaic (PV) systems is becoming more and more popular as they can reduce circuit complexity resulting in less power losses of the inverter. This paper focuses on the use of model predictive control (MPC) to control a 3-phase and 2-level single-state grid-connected inverter in order to regulate the PV maximum power point (MPP). The algorithm of MPC scheme was done to measure the simultaneous current signal including predicting the next sampling current flow. The reference current (Id*) was used to control the distribution of electrical power from the solar cell to the grid. To be able to control the maximum power point tracking (MPPT) when the sunlight suddenly changes, so that a developing MPPT based on estimation current perturbation and observation (ECP&O-MPPT) technique was used to control the reference current. This concept was experimented by using MATLAB/Simulink software package. The proposed technique was tested and compared with the old technique. The simulation results showed that the developed MPPT technique can track the MPP faster when the light changes rapidly under 1,000 W/m2, 25°C standard climatic conditions. The MPPT time was 0.015 s. The total harmonic distortion (THD) was 2.17% and the power factor was 1.  相似文献   

12.
Owing to the tremendous advances in the digital technology, and improved reliability and performance of the digital control mechanisms, this paper focuses on design and implementation of digital controller using FPGA-based circuit design approach. The digital controller proposed is designed for series resonant inverter used in DC-DC converter applications. Phase modulation technique is proposed for the realization of digital controller on FPGA. The Series Resonant Converter (SRC) is considered in this paper as a preferred converter topology for high power, high voltage power supplies. This paper studies the implementation of phase shift modulation technique using FPGA. The inverter designed, is IGBT based, and Zero Voltage Switching (ZVS) technique is implemented due to reduced stresses on devices and increased efficiency. The phase modulated series resonant inverters (PM-SRC) promotes ZVS operation when its switching frequency is greater than resonant frequency. The designed PM controller is realized using FPGA on which control algorithm and other features of a controller are developed. The series resonant inverter is built and tested for full load under open loop and closed loop conditions at a switching frequency of 20 kHz. The results are presented under varying load conditions. The simulation and the experimental results were found to match closely.  相似文献   

13.
This paper presents a combined control and modulation technique to enhance the power quality (PQ) and power reliability (PR) of a hybrid energy system (HES) through a single-phase 11-level cascaded H-bridge inverter (11-CHBI). The controller and inverter specifically regulate the HES and meet the load demand. To track optimum power, a Modified Perturb and Observe (MP&O) technique is used for HES. Ultra-capacitor (UCAP) based energy storage device and a novel current control strategy are proposed to provide additional active power support during both voltage sag and swell conditions. For an improved PQ and PR, a two-way current control strategy such as the main controller (MC) and auxiliary controller (AC) is suggested for the 11-CHBI operation. MC is used to regulate the active current component through the fuzzy controller (FC), and AC is used to regulate the dc-link voltage of CHBI through a neural network-based PI controller (ANN-PI). By tracking the reference signals from MC and AC, a novel hybrid pulse width modulation (HPWM) technique is proposed for the 11-CHBI operation. To justify and analyze the MATLAB/Simulink software-based designed model, the robust controller performance is tested through numerous steady-state and dynamic state case studies.  相似文献   

14.
A novel simple control technique for on-chip all-digital three-phase alternating current to direct current (AC/DC) power-metal oxide semiconductor field-effect transistors (MOSFET) converter with least components, which is employed to obtain small current and DC output voltage ripples as well as excellent performance, and using a feedforward simple control method for DC output voltage regulation is proposed. The proposed all-digital feedforward controller has the features of low cost, simple control, fast response, independence of load parameters and the switching frequency, it has no need for compensation, and high stability characteristics; moreover, the proposed controller consists of three operation amplifiers and few digital logic gates that are directly applied to the three-phase converter. The power-MOSFETs are also known as power switches, whose control signals are derived from the proposed all-digital feedforward controller. Instead of thyristors or diodes, the application of power-MOSFETs can reduce the loss of AC/DC converter that is proper to the power supply system. The input stage of an AC/DC converter functions as a rectifier and the output stage is a low pass inductor capacitor (LC) filter. The input AC sources may originate from miniature three-phase AC generator or low-power three-phase DC/AC inverter. The maximum output loading current is 0.8 A and the maximum DC output ripple is less than 200 mV. The prototype of the proposed AC/DC converter has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 mum 2P4M complementary MOS (CMOS) processes. The total chip area is 2.333 1.960 mm2. The proposed AC/DC converter is suitable for the following three power systems with the low power, DC/DC converter, low-dropout linear regulator and switch capacitor. Finally, the theoretical analysis is verified to be correct by simulations and experiments.  相似文献   

15.
This paper investigates the behaviour of a microgrid system during transition between grid-connected mode and islanded mode of operation. During the grid-connected mode the microgrid sources will be controlled to provide constant real and reactive power injection. During the islanded mode the sources will be controlled to provide constant voltage and frequency operation. Special control schemes are needed to ensure proper transition from constant PQ mode to constant fV mode and vice versa. Transition from one mode to other will introduce severe transients in the system. Two kinds of transition schemes based on the status of the off-line controller are discussed and a comparative study is presented for various step changes in the load. An additional-pole-placement-based output feedback controller augmentation during transition between the modes is proposed to reduce the transients. A static output feedback compensator design is proposed for the grid connected to island mode transition and a dynamic output feedback compensator design is proposed for resynchronisation. The performance of the output feedback controllers is tested under various operating conditions and found to be satisfactory for the tested conditions.  相似文献   

16.
This paper presents, for the first time, a coupled piezoelectric-circuit finite element model (CPC-FEM) to analyze the power output of a vibration-based piezoelectric energy-harvesting device (EHD) when it is connected to a load resistor. Special focus is given to the effect of the load resistor value on the vibrational amplitude of the piezoelectric EHD, and thus on the current, voltage, and power generated by the device, which are normally assumed to be independent of the load resistor value to reduce the complexity of modeling and simulation. The presented CPC-FEM uses a cantilever with a sandwich structure and a seismic mass attached to the tip to study the following characteristics of the EHD as a result of changing the load resistor value: 1) the electric outputs: the current through and voltage across the load resistor; 2) the power dissipated by the load resistor; 3) the displacement amplitude of the tip of the cantilever; and 4) the shift in the resonant frequency of the device. It is found that these characteristics of the EHD have a significant dependence on the load resistor value, rather than being independent of it as is assumed in most literature. The CPC-FEM is capable of predicting the generated output power of the EHD with different load resistor values while simultaneously calculating the effect of the load resistor value on the displacement amplitude of the tip of the cantilever. This makes the CPC-FEM invaluable for validating the performance of a designed EHD before it is fabricated and tested, thereby reducing the recurring costs associated with repeat fabrication and trials. In addition, the proposed CPC-FEM can also be used for producing an optimized design for maximum power output.  相似文献   

17.
In this article, an Enhanced Radial Fuzzy Wavelet Neural Network with Sliding Mode (RFWNNSM) and hill-climb searching (HCS) maximum power point tracking (MPPT) strategy are proposed for a switched reluctance generator (SRG) in a variable-speed wind energy conversion system (WECS). The implemented MPPT control is an HCS algorithm that does not require the knowledge of turbine or generator characteristics. However, this study proposes a simple optimal DC-Link voltage search type HCS control, and therefore a faster convergence to MPPT is achieved. A high-performance online training Enhanced Radial Fuzzy Wavelet Neural Network (RFWNN) using a back-propagation learning algorithm with a sliding mode regulating controller is designed for an SRG. The MPPT strategy locates the system operation points along the maximum power curves based on the DC-Link voltage of the inverter, thus avoiding the need to detect the generator speed.  相似文献   

18.
A recurrent wavelet neural network (RWNN) controller with improved particle swarm optimisation (IPSO) is proposed to control a three-phase induction generator (IG) system for stand-alone power application. First, the indirect field-oriented mechanism is implemented for the control of the IG. Then, an AC/DC power converter and a DC/AC power inverter are developed to convert the electric power generated by a three-phase IG from variable frequency and variable voltage to constant frequency and constant voltage. Moreover, two online trained RWNNs using backpropagation learning algorithm are introduced as the regulating controllers for both the DC-link voltage of the AC/DC power converter and the AC line voltage of the DC/AC power inverter. Furthermore, an IPSO is adopted to adjust the learning rates to further improve the online learning capability of the RWNN. Finally, some experimental results are provided to demonstrate the effectiveness of the proposed IG system.  相似文献   

19.
Parallel operation of synchronous and induction generators in micro hydro scheme is presented. The synchronous generator has an exciter, which provides a fixed excitation to produce normal rated terminal voltage at full resistive load. On the other hand, the induction generator has neither exciter nor speed controller. Static compensator (STATCOM) is connected to the common bus for terminal voltage and frequency control. A resistive dump load is connected across the DC link capacitor of STATCOM through a chopper to control active power. Simulink model is developed to perform transient analysis of the proposed scheme. Experimental results are presented to compare with the simulation results. It is found that connection of an induction generator in parallel with the synchronous is much simpler than connecting two synchronous generators in parallel.  相似文献   

20.
M VIJAYAKUMAR  S VIJAYAN 《Sadhana》2014,39(4):859-877
This paper proposes a Photovoltaic (PV)-based three-phase four-wire Series Hybrid Active Power Filter (SHAPF), it comprises of a Series Active Power Filter (SAPF) and an LC shunt passive filter. The proposed system eliminates both the current and voltage harmonics and compensates reactive power, neutral current and voltage interruption. A SAPF demands a source of energy for compensating the voltage sag/swell. This system found a new topology for SHAPF which utilizes the PV with DC–DC boost converter as a source of DC power for the series active filter. The compensation current reference evaluation is based on the twin formulation of the vectorial theory of electrical power theorem with Fuzzy Logic Controller (FLC). The PV array/battery managed DC–DC boost converter is employed to step up the voltage to meet the DC bus voltage requirement of the three-leg Voltage Source Inverter (VSI). The foremost benefit of the proposed system is that, it will provide uninterrupted compensation for the whole day. This system utilizes the renewable energy; accordingly saves the energy and provides the uninterruptable power supply to critical/sensitive load, through the PV array/battery bank during both day time and night time. An experimental model was established and results were obtained, which indicated the capability of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号