首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behavior of (TeO2) n (MoO3)1–n (n = 0.75, 0.85, 0.90) tellurite glasses has been studied by differential scanning calorimetry in the range from T = 300 to T = 850 K and heat capacity has been measured in the temperature range. The thermodynamic characteristics of the devitrification process and glassy state have been determined. The experimental data obtained have been used to evaluate the standard thermodynamic functions of the system in glassy and supercooled liquid states: heat capacity C p °(T), enthalpy H°(T)–H°(320), entropy S°(T)–S°(320), and Gibbs function G°(T)–G°(320) in the temperature range 320–630 K. The composition dependences of the glass transition temperature and thermodynamic functions for the glasses have been obtained. The thermal and thermodynamic properties of the tellurite glasses have been compared to those of previously studied (TeO2) n (WO3)1–n and (TeO2) n (ZnO)1–n glasses.  相似文献   

2.
It is shown that an application of a fast-rising high-voltage pulse to an n +nn + silicon structure leads to subnanosecond avalanche breakdown, generation of electron–hole plasma throughout the entire structure, and structure switching to the conducting state in a time of about 100 ps. The predicted effect is similar to the delayed avalanche breakdown of reverse-biased p +nn + diode structures; however, it is implemented in a structure without pn junctions.  相似文献   

3.
Granular composite samples of GdBa2Cu3O7– (Gd123), PrBa2Cu3O7– (Pr123), and Pr0.5Ba0.5Ba2Cu3O7– (PrBa123) have been prepared by the solid state reaction technique. The characterization of samples has been done by SEM and XRD measurements. We have investigated the effect of Pr123 and PrBa123 insulating grains on the superconductor-insulator transition and the normal state resistivity of the (1–n)Gd123-nPr123 and (1–m)Gd123-mPrBa123 systems. The dominant diffusion of Pr ions onto the neighboring Gd123 grains in (1–n)Gd123-nPr123 causes high rate of suppression of superconductivity similar to the chemical-doped GdPr123 system. For (1–m)Gd123-mPrBa123 system, the suppression rate is slower and we have superconducting sample with Tcmid = 41 K for the second phase of m = 0.6 sample. Comparison of the superconductor-insulator and metal-insulator transitions in the granular samples and the chemical substituted GdPr123 indicates optimization of the superconducting state in (1–n)Gd123-mPrBa123 relative to (1–n)Gd123-nPr123 and GdPr123 systems. The more stable characteristic of PrBa123 relative to Pr123, when they are mixed with Gd123 grains, makes PrBa123 more suitable for any superconductor-insulator application. The mechanism of suppression of superconducting state for Pr123 has been discussed by comparison of experimental results against the hole filling and hole localization models presented for the insulating Pr123.  相似文献   

4.
The article is devoted to analysis of the boundary conditions for the Peltier effect in semiconductors containing potential barriers (p–n junction). The full system of boundary conditions, taking into consideration the presence of nonequilibrium charge carriers, is offered. The surface recombination of charge carriers is taken into account for both the electric current and the propagation of heat.  相似文献   

5.
We have studied in detail the coupled phonon-plasmon mode Raman spectra of n-In x Ga1 − x As with n in the range 1017 to 1019 cm−3. The results indicate that the behavior of the high-frequency mode L + can be described in terms of coupled modes in the Drude approximation. The proposed theory and experimental data are used to estimate the carrier concentration in the solid solution and its composition.  相似文献   

6.
By employing a mean field model, calculation of the TP phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N2, and the fitted parameters are determined. Our model study gives that the observed TP phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.  相似文献   

7.
In this work, we have explored the structural and magnetic properties of GaP-based diluted magnetic semiconductors (DMSs). Based on first-principle density functional theory (DFT) calculations and using a full potential linearized augmented plane wave (FP-LAPW) method in generalized gradient approximation (GGA), some significant structural and magnetic properties of Ga 1?x (M) x P compound as DMS are investigated. In this compound, M is a transition element such as vanadium (V), manganese (Mn), cobalt (Co), and copper (Cu) with a concentration of X. We have calculated the structural parameters such as the equilibrium lattice constant and bulk modulus of the compound. Furthermore, the spin polarization and magnetic moments are studied. We have found that by increasing the atomic number of the transition element, the lattice constant reduces, except for that of Cu, and compressibility improved in comparison with GaP. Moreover, with X=25 %, the Ga0.75(M)0.25P compound becomes more stable by increasing the atomic number of the transition element M. The study of the electronic properties of the compound indicates that the main contribution in total density of states near Fermi level is related to the 3d orbitals of the transition elements and the highest magnetic moment is for Mn-doped GaP.  相似文献   

8.
N,N,N′,N′-Tetra-2-ethylhexylglutaramide (TEHGA) was used as a new extractant for the extraction of U(VI) and Th(IV) from nitric acid solutions. Toluene was found to be the most suitable diluent for TEHGA. The extraction of nitric acid was also studied. The influence exerted on the distribution ratio (D) of U(VI) and Th(IV) by the concentrations of HNO3, TEHGA, and LiNO3 as salting-out agent, and also by the equilibration time, temperature, and kind of diluent was examined. Good U–Th separation can be achieved using 2–3 M HNO3. The results obtained show that U(VI) and Th(IV) are mainly extracted as UO2(NO3)2·2TEHGA and Th(NO3)4·TEHGA, respectively. The IR spectra of the extracted species were analyzed. The thermodynamic functions of the process were calculated. Back-extraction of U(VI) and Th(IV) from the organic phases was also studied.  相似文献   

9.
The substitution of strontium for lead in the material (La1.5Pb0.5?xSr x )CuO z , x = 0–0.15 has been carried out. A stable and reproducible single phased superconducting materials can be obtained inside an evacuated quartz tube. The X-ray diffraction pattern shows that the superconducting phase can be indexed on the basis of an orthorhombic symmetry (Fmmm) for x = 0 and on the basis of tetragonal symmetry (I4/mmm) for x > 0. The transition temperature T c increases as the strontium substitution parameter x increases. We observed the maximal T c around x = 0.15 with 38 K with fairly large Meissner volume fraction of 38% (FC).  相似文献   

10.
Photodiodes sensitive in the wavelength range of 1.1–2.4 μm have been created based on n-GaSb/n-GaInAsSb/p-AlGaAsSb heterostructures with a narrow-gap n-GaInAsSb layer (E g ≅ 0.5 eV) grown in the presence of a rare-earth element (holmium). The electron concentration in the narrow-gap layer is n = 1 × 1016 cm−3, which is about one-fourth of that in an analogous structure grown without the rare-earth element. The proposed structure is characterized by increased quantum efficiency and response speed.  相似文献   

11.
The existence of twin domains in YBa2(Cu1?xCo x )3O y samples was confirmed by many experiments. However, the physical picture of the twin domains has not been reported up to now. By analyzing oxygen content, Cu and Co valences, and Co coordination in those samples, we propose a domain model, which consists of two pairs of parallel zigzag Co-O chains surrounding orthorhombic cells, one along (110) direction and the other along (110) direction. The zigzag Co-O chains are the twin walls, with neighboring walls perpendicular and the opposite ones parallel. The distance between parallel walls (i.e., zigzag Co-O chains) depends upon Co concentration of sample. The twin domain model predicts the geometry, size, and absence of systematic symmetry of the domains. The model also predicts the modulation periodicity of electron diffraction patterns, which depends on Co concentration. All the predictions by the model agree well with the experimental results reported in literatures. Furthermore, the model indicates the possible existence of two domains, which have incommensurable modulation periodicity.  相似文献   

12.
(1 ? x)(K0.5Na0.5)NbO3xBi(Mg0.75Mo0.25)O3 [(1 ? x)KNN–xBMM] (x?=?0.005, 0.01, 0.02) ceramics were prepared via a solid-state reaction method. X-ray diffraction patterns (XRD) and Raman spectrum showed that a solid solution was formed between the BMM and KNN, which improved the electrical properties of KNN. With increasing the BMM content, the grain firstly increased and then decreased. When x?=?0.01, the ceramics exhibited the optimized microstructure, indicating that there exits an optimal doping component. Temperature dependence of relative permittivity also increases firstly and then decreases. The relative permittivity (εr) of ~?1418 in stabilization zone, εmax?~?4861 at the Curie temperature T C ~ 394 °C, good temperature stability ?ε/ε123 °C?≤?±?15% from 123 °C to 348 °C, and the dielectric loss tanδ?≤?0.036 from 109 to 348 °C were obtained for 0.99KNN-0.01BMM ceramics. Conductivity behavior of the (1 ? x)KNN–xBMM was investigated as a function of temperature from 420 to 520 °C and frequency from 40 to 106 Hz, showing that the basic mechanisms of conduction and relaxation processes were thermally activated, and oxygen vacancies were the possible ionic charge transport carriers at higher temperatures.  相似文献   

13.
A microcrystalline mixture of cadmium carbonate (CdCO3) and cadmium sulfide (CdS) were grown in the thin film format onto glass substrates by means of chemical bath. The temperature of the bath (Td) was selected in the interval 23–80C. At low temperatures, CdCO3 is the compound predominant in the layers. At high temperatures CdS is the compound deposited on the substrate. At intermediate Td-values a mixture of both materials are present, i.e., the gradual transition from an insulator (CdCO3) to a semiconductor (CdS) growth occurs when Td increases. Physical properties of films were studied by means of X-ray diffraction and optical absorption. The forbidden energy band gap of direct electronic transitions (Eg) was calculated by applying the α2 ∝ (hν − Eg) relation to the optical absorption spectra.  相似文献   

14.
We have investigated the current–voltage (IV) and capacitance–voltage (CV) characteristics of Ru/Pt/n-GaN Schottky diodes in the temperature range 100–420 K. The calculated values of barrier height and ideality factor for the Ru/Pt/n-GaN Schottky diode are 0·73 eV and 1·4 at 420 K, 0·18 eV and 4·2 at 100 K, respectively. The zero-bias barrier height (Φb0) calculated from IV characteristics is found to be increased and the ideality factor (n) decreased with increasing temperature. Such a behaviour of Φb0 and n is attributed to Schottky barrier (SB) inhomogeneities by assuming a Gaussian distribution (GD) of barrier heights (BHs) at the metal/semiconductor interface. The current–voltage–temperature (I–V–T) characteristics of the Ru/Pt/n-GaN Schottky diode have shown a double Gaussian distribution having mean barrier heights ( [`(F)]\textb0 {\bar{{\Phi}}_{\text{b}0}} ) of 1·001 eV and 0·4701 eV and standard deviations (σ 0) of 0·1491 V and 0·0708 V, respectively. The modified ln (J0 /T2 )-( q2s 02/2k2T2 ){ln} ({{J}_{0} /{T}^{2}} )-( {{q}^{2}{\sigma} _{0}^{2}/{2}{k}^{2}{T}^{2}} ) vs 103/T plot gives [`(F)]\textb0 \bar{{\Phi}}_{\text{b}0} and Richardson constant values as 0·99 eV and 0·47 eV, and 27·83 and 10·29 A/cm2K2, respectively without using the temperature coefficient of the barrier height. The difference between the apparent barrier heights (BHs) evaluated from the IV and CV methods has been attributed to the existence of Schottky barrier height inhomogeneities.  相似文献   

15.
WS2 is a promising catalyst for the hydrogen evolution reaction. We have explored photocatalytic properties of ternary sulphoselenides of tungsten (WS x Se 2?x ) by the dye-sensitized hydrogen evolution. WS x Se 2?x solid solutions are found to exhibit high activity reaching 2339 μmol h?1 g?1 for WSSe, which is three times higher than that of WS2 alone (866 μmol h?1 g?1 ). The turnover frequency is also high (0.7 h?1 ). Such synergistic effect of selenium substitution in WS2 is noteworthy.  相似文献   

16.
The thermal conductivity of Er x Sn1 ? x Se solid solutions has been measured at temperatures from 80 to 360 K. The results have been used to evaluate the electronic and lattice components of thermal conductivity for elastic carrier scattering, parabolic bands, and arbitrary degeneracy. With increasing erbium content and temperature, both the electronic and lattice components decrease considerably. Long-term annealing increases both components. It follows from the present experimental data that heat conduction in Er x Sn1 ? x Se is mainly due to phonons and that the observed rise in thermal resistance with Er content is due to phonon-phonon and paramagnetic-ion scattering.  相似文献   

17.
p-Si1 ? x Ge x crystals have been diffusion-doped with gold. Gold diffusion in the p-Si1 ? x Ge x 〈Au〉 samples and their electrical properties have been studied. The results demonstrate that the highest gold concentration in the crystals can be achieved in the temperature range 1000–1050°C. An expression has been derived which indicates that, all other factors being the same, compensation with Au, an amphoteric impurity, insures better homogeneity compared to codoping with acceptor and donor impurities. The hole concentration homogeneity in gold-compensated samples is at the same level as or even better than that in the uncompensated material.  相似文献   

18.
The relative densities of SiCl n (n = 0–2) in SiCl4 radio frequency (rf) glow discharge plasma are measured by mass spectrometry. The effects of discharge parameters, i.e., rf power, discharge pressure, substrate temperature, and SiCl4 flow rate on the relative densities of SiCl n (n = 0–2) are investigated in detail. An optimum configuration of discharge parameters (low rf power, high discharge pressure, low substrate temperature, and low flow rate), which enhanced the formation of SiCl n (n = 0–2) radicals, is searched by a great deal of measurements and discussions. In the optimum configuration of discharge parameters, we measure the spatial distribution of SiCl n (n = 0–2) radicals in the most optimized plasma parameters. The experimental results reveal that Si and SiCl may be the dominant precursors in forming the thin film.  相似文献   

19.
Superconducting Cu x TaSe2(x=0.05, 0.15) and Cu0.15TaSe2?x S x (x=0, 0.5, 1, 1.5) single crystals have been systematically fabricated by a chemical vapor transport method. It is found that the double doping in TaSe2, i.e., the simultaneous intercalation of Cu and substitution of Se by S, can substantially enhance the superconducting transition temperature. Transport property measurements give evidence of the coexistence and competition of charge density wave state and superconductivity in Cu x TaSe2 which provide meaningful information to understand the complex electronic states in this system. The parallel shift and the fan-shape broadening behaviors are observed in the superconducting transition curves under magnetic fields of Cu0.15TaSeS and TaSeS, respectively, indicating an increase of coherence length and suppression of superconducting fluctuation induced by copper intercalation.  相似文献   

20.
Composites of nominal composition (PbTe)1?x(CoTe) x (x?=?0–0.18) were fabricated by high pressure (6 GPa) sintering (773 K) method. The thermoelectric performances were investigated in the temperature range of 293–773 K. The experimental results show that CoTe utilized as the secondary phase can remarkably enhance the TE properties of PbTe, of which the highest ZT value reaches 0.88 at 473 K when x?=?0.14. The enhancement of TE performance owes much to its high electric conductivity of CoTe. Meanwhile, the high pressure sintering (HPS) samples consist of nanoparticle, which significantly enhances the boundary scattering on carriers, decreases thermal conductivity, and increases Seebeck coefficient. All the results indicate that HPS method and the addition of CoTe-composite are effective methods to enhance the thermoelectric performance of PbTe as a potential TE material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号