首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gravimetric analysis is the regulatory method for diesel particulate mass measurement. Because of issues such as adsorption/volatilization artifacts, it faces obstacles in measuring ultra low level emissions from modern diesel engines. Alternative methods of suspended particle mass measurement have been developed that show improvements in time resolution, sensitivity, and accuracy. Three size-resolved methods were considered here. Two methods rely on converting number size distributions obtained using a scanning mobility particle sizer (SMPS). Conversion techniques were based on effective density measurements and the Lall-Friedlander aggregate model. The third method employs the Universal Nanoparticle Analyzer (UNPA) to measure the aggregate size distribution from which mass is calculated. Results were compared with mass concentrations obtained using gravimetric analysis. The effective density conversion resulted in mass concentrations that were highly correlated (R(2) >0.99) with filter mass. The ratios to filter mass concentration were found to be 0.99 ± 0.04, 0.45 ± 0.03, and 0.45 ± 0.19 for the effective density conversion, the Lall-Friedlander conversion, and the UNPA, respectively, for a wide range of engine operating conditions. In addition, the diesel aerosol mass distributions measured by the online techniques are in agreement to within 15-20% with respect to the mass median diameter, while discrepancies were observed in the mass concentration.  相似文献   

2.
Aerosol filter samples collected at a major urban traffic junction (LKP) and at a suburban residential location (IWC) in the metropolitan area of Munich (Germany) throughout the years 2001 and 2002 have been analyzed for 12 of the 16 EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants by liquid chromatography with fluorescence detection. The mean mass concentration of the sum of all investigated PAH in the sampled air at LKP (1.9-5.0 ng m(-3)) was roughly two times higher than at IWC (0.8-2.9 ng m(-3)), and at both locations it was about 2-3 times higher in winter (heating season) than in summer and spring or autumn. Comparisons with earlier measurement campaigns indicate a steep decrease of PAH abundance by almost an order of magnitude from 1980 to 1993 and a much slower decrease since then. Distinctly different seasonal trends and short-term fluctuations have been observed for semivolatile 3- and 4-ring PAH and for particle-bound 5- and 6-ring PAH. Based on systematic correlation analyses with a wide range of air quality parameters, most of the differences can be attributed to not only varying emissions but also chemical reactions with atmospheric oxidants which were found to play an important role. The results of denuder experiments prove that substantial degradation of the particularly toxic tracer benzo[a]pyrene and of the other investigated 5- and 6-ring PAH can occur during filter sampling and on airborne particles (formation of oxygenated and nitrated derivatives). Filter reaction artifacts are shown to lead to an underestimation of the actual PAH content of urban air particulate matter by up to 100% of the measurement value or more, with a near-linear dependence on ozone volume mixing ratio. The role and applicability of ozone as a tracer of atmospheric oxidizing capacity for particle-bound PAH is discussed and confirmed by comparison with earlier investigations and by complementary laboratory experiments (reaction kinetics and product studies).  相似文献   

3.
Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.  相似文献   

4.
The carbonaceous component of atmospheric particulate matter (PM) is considered very important with respect to the observed adverse health effects of PM. Particulate organic and elemental carbon have traditionally been measured off-line after daily, time-integrated particle collection on filters. However, the subdaily or hourly variability of elemental carbon (EC) and organic carbon (OC) can help to assess the variability of sources, ambient levels, and human exposure. In this study, the performance of the Sunset Laboratory Inc. semicontinuous EC/OC monitorwas assessed in a Los Angeles location representing typical urban pollution. An intermonitor comparison showed high precision (R2 of 0.98 and 0.97 for thermal OC and EC, respectively). By changing the inlet configurations of one of the monitors (adding a denuder, a Teflon filter, or both), the influences of positive and negative sampling artifacts were investigated. The positive artifact was found to be relatively large (7.59 microg/m3 on average), more than 50% of measured OC, but it was practically eliminated with a denuder. The negative artifact was much smaller (less than 20% of the positive artifact) and may be neglected in most cases. A comparison of different temperature profiles, including a fast 4-min analysis using optical EC correction, showed good agreement among methods. Finally, a novel configuration using a size selective inlet impactor removing particles greater than 250 nm in diameter allowed for semicontinuous size-fractionated EC/OC measurements. Evolution of OC at different temperatures of the thermal analysis showed higher volatility OC in larger particles.  相似文献   

5.
This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.  相似文献   

6.
To clarify the photolytic behavior of polycyclic aromatic hydrocarbons (PAHs) in diesel particulate matter (DPM) deposited on the ground, we determined the rate constants and half-lives for the photodegradation of benzo[a]pyrene (BaPy), phenanthrene (Phe), fluoranthene (Flrt), pyrene (Py), and chrysene (Ch) in air for three probable cases: (1) DPM is placed on an inert surface, (2) DPM is mixed with soil, and (3) PAHs are leached from DPM and adsorbed to soil. We found that BaPy and Phe degraded relatively quickly in case 1. However, in case 2, these PAHs degraded more slowly due to the effect of the presence of soil. Flrt, Py, and Ch were stable. In case 3, photodegradation of adsorbed PAHs in soil was strongly inhibited as a function of soil depth. Although these findings were obtained at extreme light intensities, they may occur under real world conditions. Conversion factors for obtaining rate constants and half-lives for PAHs on the ground under sunlight are presented. We conclude that under the average intensity of sunlight in Tokyo, photodegradation of PAHs in DPM deposited on an inert surface is very slow.  相似文献   

7.
A diesel particulate matter analyzer capable of direct, real-time measurement of engine exhaust particulate is necessary to effectively institute source control technology currently being used on diesel equipment and to ensure that the control measures are working. To investigate the potential of a differential pressure monitor to measure diesel particulate matter in undiluted exhaust, samples were collected from three different diesel engines--Kubota, Isuzu, and Deutz--running under 12 different RPM and load scenarios. These measurements were compared to elemental carbon concentrations in the sampled exhaust as determined by using the NIOSH 5040 analytical method. Elemental carbon is used as a surrogate measurement for diesel particulate matter. The results of the two data sets were then compared using a linear regression analysis. The coefficient of determination (or R2) was calculated to be 0.98, 0.94, and 0.74 for the Kubota, Deutz, and Isuzu engines, respectively. R2 values of this magnitude indicate that this method can be successful in estimating elemental carbon emissions in the engines tested. In addition, for replicate samples, the coefficient of variation ranged from 7.1% to 10.2% with an average of 8.5%. These data indicate that this method could prove useful to mechanics as they work to maintain engines and DPM control technologies.  相似文献   

8.
Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.  相似文献   

9.
Airborne particulate matter is an important pollutant affecting air quality. Currently, diesel PM regulations are based on emitted particle mass; however, the particle size distributions are also important factors in air quality. While the distributions of particulate emissions under steady-state conditions are well-known and have been generalized, varying distributions undertransient conditions are not well-understood. This study investigates the size distributions of PM, focusing on the nuclei- and accumulation-modes, emitted from diesel engines under transient operations. Some engine conditions during transient testing produced particle size distributions that were notably different from those produced under steady-state conditions. During transient operation, the size distributions were either mono- or bimodal with peaks that were able to switch quickly between the nuclei- and accumulation-modes. These distributions have not been observed during steady-state testing but are significant because environmental and health effects and emission control solutions are highly dependent on particle size.  相似文献   

10.
Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency measured for increases in applied voltage. The collection efficiency based on particle size had a minimum for sizes between 20 and 50 nm, but at optimal wESP operating conditions it was possible to remove over 90% of all particle sizes. A comparison of measured and calculated collection efficiencies reveals that the measured values are significantly higher than the predicted values based on the well-known Deutsch equation.  相似文献   

11.
We report on the development and application of an integrated set of analytical tools that enable accurate measurement of total, extractable, and, importantly, the oxidation state of vanadium in sub-milligram masses of environmental aerosols and solids. Through rigorous control of blanks, application of magnetic-sector-ICPMS, and miniaturization of the extraction/separation methods we have substantially improved upon published quantification limits. The study focused on the application of these methods to particulate matter (PM) emissions from diesel vehicles, both in baseline configuration without after-treatment and also equipped with advanced PM and NO(x) emission controls. Particle size-resolved vanadium speciation data were obtained from dynamometer samples containing total vanadium pools of only 0.2-2 ng and provide some of the first measurements of the oxidation state of vanadium in diesel vehicle PM emissions. The emission rates and the measured fraction of V(V) in PM from diesel engines running without exhaust after-treatment were both low (2-3 ng/mile and 13-16%, respectively). The V(IV) species was measured as the dominant vanadium species in diesel PM emissions. A significantly greater fraction of V(V) (76%) was measured in PM from the engine fitted with a prototype vanadium-based selective catalytic reductors (V-SCR) retrofit. The emission rate of V(V) determined for the V-SCR equipped vehicle (103 ng/mile) was 40-fold greater than that from the baseline vehicle. A clear contrast between the PM size-distributions of V(V) and V(IV) emissions was apparent, with the V(V) distribution characterized by a major single mode in the ultrafine (<0.25 μm) size range and the V(IV) size distribution either flat or with a small maxima in the accumulation mode (0.5-2 μm). The V(V) content of the V-SCR PM (6.6 μg/g) was 400-fold greater than that in PM from baseline (0.016 μg/g) vehicles, and among the highest of all environmental samples examined. Synchrotron based V 1s XANES spectroscopy of vanadium-containing fine-particle PM from the V-SCR identified V(2)O(5) as the dominant vanadium species.  相似文献   

12.
A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.  相似文献   

13.
A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). Aerosol mass spectrometry analysis showed that the presence of the DOC decreases the Organic Carbon (OC) fraction adsorbed to soot particles. The activation energy values determined for soot nanoparticles oxidation were 97 ± 5 and 101 ± 8 kJ mol(-1) with and without the DOC, respectively; suggesting that the DOC does not facilitate elementary carbon oxidation. The minimum temperature necessary for DPF regeneration was strongly affected by the presence of the DOC in the aftertreatment. The conversion of NO to NO(2) inside the DOC induced the DPF regeneration process at a lower temperature than O(2) (ΔT = 30 K). Also, it was verified that the OC fraction, which decreases in the presence of the DOC, plays an important role to ignite soot combustion.  相似文献   

14.
15.
Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.  相似文献   

16.
Diesel particulate matter (PM) reduction efficiencies for backup generators (BUGs) (> 300 kW) equipped with a diesel oxidation catalyst (DOC), DOC+fuel-borne catalyst additive combination (DOC+FBC), passive diesel particulate filter (DPF), and an active DPF were measured. Overall, the DOC and DOC+FBC technologies were found to be effective in reducing mainly organic carbon (OC) emissions (56-77%) while both DPFs showed excellent performance in reducing both elemental carbon (EC) and OC emissions (> 90%). These findings demonstrate the potential for applying DOCs to older engines where PM is dominated by the OC fraction. In most modern engine applications, where the PM consists of mainly EC, the DOC will be largely ineffective. Alternatively, passive and active DPFs are expected to be efficient for most engine technologies. Measurements of particle size distributions provided evidence of the high temperature formation of sulfate nanoparticles across the control technologies despite the use of ultralow sulfur diesel. Changes in the particle size distribution and the organic fraction of PM indicate that the OC component of PM is primarily found in the smaller sized particles.  相似文献   

17.
Samples of fine particulate matter were collected in a roadway tunnel near Houston, TX over a period of 4 days during two separate sampling periods: one sampling period from 1200 to 1400 local time and another sampling period from 1600 to 1800 local time. During the two sampling periods, the tunnel traffic contained roughly equivalent numbers of heavy-duty diesel trucks. However, during the late afternoon sampling period, the tunnel contained twice as many light-duty gasoline-powered vehicles. The effect of this shift in the vehicle fleet affects the overall emission index (grams pollutant emitted per kilogram carbon in fuel) for fine particles and fine particulate elemental carbon. Additionally, this shift in the fraction of diesel vehicles in the tunnel is used to determine if the chemical mass balancing techniques used to track emissions from gasoline-powered and diesel-powered emissions accurately separates these two emission categories. The results show that the chemical mass balancing calculations apportion roughly equal amounts of the particulate matter measured to diesel vehicles between the two periods and attribute almost twice as much particulate matter in the late afternoon sampling period to gasoline vehicles. Both of these results are consistent with the traffic volume of gasoline and diesel vehicles in the tunnel in the two separate periods and validate the ability for chemical mass balancing techniques to separate these two primary sources of fine particles.  相似文献   

18.
Chemical speciation studies use sampling configurations that often require the deployment of denuder tubes of various types to measure certain species or control particulate sampling artifacts. Concurrent sets of measurements on Teflon membrane and quartz filters in specific sampling configurations were used to evaluate the potential influence of denuder tubes with glycerol-based coatings on particulate mass and carbon measurements on downstream filters. Positive biases were observed in the measurement of gravimetric mass and carbon on Teflon and quartz filters, respectively, downstream of sodium carbonate/ glycerol and citric acid/glycerol coated denuder tubes relative to those without upstream denuder tubes. The magnitude of the bias is dependent on the level of ambient particulate loading.  相似文献   

19.
Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC emissions derived in this study provide a foundation for future source apportionment calculations.  相似文献   

20.
Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号