首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamic characteristics in aqueous solution at ionic strength I=0.2  of carboxymethylchitins of different degrees of chemical substitution have been determined. Experimental values varied over the following ranges: the translational diffusion coefficient (at 25.0°C), 1.1<107×D<2.9 cm2 s−1; the sedimentation coefficient, 2.4<s<5.0 S; the Gralen coefficient (sedimentation concentration-dependence parameter), 130<ks<680 mL g−1; the intrinsic viscosity, 130<[η]<550 mL g−1. Combination of s with D using the Svedberg equation yielded ‘sedimentation–diffusion' molecular weights in the range 40 000<M<240 000 g mol−1. The corresponding Mark–Houwink–Kuhn–Sakurada (MHKS) relationships between the molecular weight and s, D and [η] were: [η]=5.58×10−3 M0.94; D=1.87×10−4 M−0.60; s=4.10×10−15 M0.39. The equilibrium rigidity and hydrodynamic diameter of the carboxymethylchitin polymer chain is also investigated on the basis of wormlike coil theory without excluded volume effects. The significance of the Gralen ks values for these substances is discussed.  相似文献   

2.
Diffusion of ammonia and ammonium ions in sulphonic acid cation exchangers (gel Purolite SGC 100 × 10 MBH and macroporous Purolite C 160 MBH) from the solutions, representing the composition of “caustic condensate” (waste of nitrogen fertilizers production) is affected by pH of initial solution and structure of the matrix of cation exchanger. In gel matrix the effective intraparticle diffusivity (Def) depends greatly on the solution pH because of shrinkage in alkaline and swelling in acidic medium: on decreasing the initial concentration of ammonia from 0.214 to 0.003 and increasing that of ammonium nitrate from 0 to 0.214 mol l−1 instead, the effect of ion exchange leads to a decrease in pH, resulting in swelling and increase in Def from 0.1 to 0.34 × 10−10 for gel Purolite SGC 100 × 10 MBH and variation of 0.18–0.11 × 10−10 m2 s−1 for macroporous Purolite C 160 MBH (resistant to shrinkage and swelling).

In Purolite C 160 MBH both macropore diffusivity (0.07–0.29 × 10−10 m2 s−1) and gel (solid phase) diffusivity (0.06–0.19 × 10−10 m2 s−1) are higher than micropore diffusivity (0.28–0.56 × 10−18 m2 s−1).

With respect to the effective intraparticle diffusivity, resistance to nitric acid, used for the regeneration, and high concentration of ammonium nitrate in eluate (up to 110 g l−1), Purolite C 160 MBH has been installed for the conversion of ammonia and ammonium ions to ammonium nitrate reusable in the fertilizers production. This allows minimizing the economic loss and preventing the environmental contamination.  相似文献   


3.
Nitrous and nitric acids form in aqueous solutions exposed to a gliding arc discharge burning in humid air. The anions interfere when the concentration of particular solutes such as pollutants must be determined. In particular they falsify the COD measurements and spectral investigations and thus the efficiency of the plasma treatment in pollutant abatement. The nitrite anions must be thus removed, which require specific reagents. The influence of parameters such as solution pH and [reducers]/[NO2] ratio on the reduction reaction was evaluated. The reduction of nitrite into N2 either by sulfamic acid or sodium azide is a first-order pH-dependant reaction with regard to nitrite and reducers (k1 = 2.93 × 10−1 m3 kmol−1 s−1; k2 = 6.21 × 10−1 m3 kmol−1 s−1, respectively). Sodium azide is thus more reactive than sulfamic acid.  相似文献   

4.
A mix-valenced nickel oxide, NiOx, was prepared from nickel nitrate aqueous solution through a precipitation with sodium hydroxide and an oxidation by sodium hypochlorite. Further, pure nickel oxide was obtained from the NiOx by calcination at 300, 400 and 500 °C (labeled as C300, C400 and C500, respectively). They were characterized by thermogravimetry (TG), X-ray diffraction (XRD), nitrogen adsorption at −196 °C and temperature-programmed reduction (TPR). Their catalytic activities towards the degradation of phenol were further studied under continuous bubbling of air through the liquid phase. Also, the effects of pH, temperature and kinds of nickel oxide on the efficiency of the microwave-enhance catalytic degradation (MECD) of phenol have been investigated. The results indicated that the relative activity affected significantly with the oxidation state of nickel, surface area and surface acidity of nickel oxide, i.e., NiOx (>+2 and SBET = 201 m2 g−1)  C300 (+2 and SBET = 104 m2 g−1) > C400 (+2 and SBET = 52 m2 g−1) > C500 (+2 and SBET = 27 m2 g−1). The introduction of microwave irradiation could greatly shorten the time of phenol degradation.  相似文献   

5.
The capacity intermittent titration technique (CITT) has been developed on basis of the ratio of the potentio-charge capacity to the galvano-charge capacity (RPG) method to determine continuously the solid diffusion coefficient D of the intercalary species within insertion-host materials. In experiment, CITT is based on the capacity response of galvano–potentio-charge in a small voltage region. In theory, CITT is based on the linear equations of D versus q (value of RPG) in different range of q. By the CITT, the Li+ solid diffusion coefficients within LiMn2O4 have been determined at different voltages and different galvano-charge currents. Results shows that the order of magnitude of D varies non-linearly with the “W” shape from 10−9 to 10−11 cm2 s−1 in the voltage range from 3.3 to 4.3 V. The galvano-charge current also leads to the error due to the semi-conductive character of LiMn2O4, and the maximal error may reach as much as one order of magnitude. In addition, the main approximations that lead to errors of CITT are qualitatively analyzed.  相似文献   

6.
The objective of this work was to study the promotional effect of Pt on Co-zeolite (viz. mordenite, ferrierite, ZSM-5 and Y-zeolite) and Co/Al2O3 on the selective catalytic reduction (SCR) of NOx with CH4 under dry and wet reaction stream. After being reduced in H2 at 350°C, the PtCo bimetallic zeolites showed higher NO to N2 conversion and selectivity than the monometallic samples, as well as a combination of the latter samples such as mechanical mixtures or two-stage catalysts. After the same pretreatment, under wet reaction stream, the bimetallic samples were also more active. Among the other catalysts studied with 5% of water in the feed, (NO = CH4 = 1000 ppm, O2 = 2%), the NO conversion dropped to zero over Co2.0Mor at 500°C and GHSV = 30,000 h−1, whereas it is 20% in Pt0.5Co2.0Mor. In Pt/Co/Al2O3 the NOx conversion dropped below 5% with only 2% of water under the same reaction conditions. The specific activity given as molecules of NO converted per total metal atom per second were 16.5 × 10−4 s−1 for Pt0.5Co2.0Fer, 13 × 10−4 s−1 for Pt0.5Co2.0Mor, 4.33 × 10−4 s−1 for Pt0.5Co2.0ZSM-5 and 0.5 × 10−4 s−1 for Pt/Co/Al2O3. The Y-zeolite-based samples were inactive in both mono and bimetallic samples. The species initially present in the solid were Pt° and Co°, together with Co2+ and Pt2+ at exchange positions. Co° seems not to participate as an active site in the SCR of NOx. Those species remained after the reaction but some reorganization occurred. A synergetic effect among the different species that enhances both the NO to NO2 reaction, the activation of CH4 and also the ability of the catalyst to adsorb NO, could be responsible for the high activity and selectivity of the bimetallic zeolites.  相似文献   

7.
In the preparation of 1% Au/TiO2 catalysts supported on either Degussa P-25 or anatase (90 m2 g−1) by deposition–precipitation, the gold content passes through a maximum at about the isoelectric point (pH 6), but maximum specific rates occur at pH 8–9 because the Au particle size becomes smaller as the pH is further increased. The gold uptake increases with the surface area of the support (anatase, rutile, P-25) and is complete above 200 m2 g−1; adsorption of the gold precursor at pH 9 is shown to be equilibrium-limited. Highest activities are found with supports of 50 m2 g−1. Catalysts made with high-area anatase (240 or 305 m2 g−1) are least active but show least deactivation.With Au/SnO2 catalysts, gold uptake does not depend on the area of the support, and is highest at pH 7–8; very active catalysts (T50 = 230–238 K) are obtained using SnO2 of 47 m2 g−1. Storing a catalyst at 258 K for 1 week dramatically improves its stability. Results for Au/CeO2 and Au/ZrO2 catalysts confirm that moderate support areas give the most active catalysts, and suggest that surface area is often more important than chemical composition.  相似文献   

8.
Characteristic electrochemical transport parameters for an experimental poly(ethylene)terephtalate (PET) track-etched membrane with well-defined structure and low porosity (Θ=0.13%) were determined with the membrane in contact with KCl solutions at different concentrations. Membrane potential, Δφm, measurements were performed to investigate the effective fixed charge concentration, Xf, and transport number of the ions, ti, in the membrane using two different procedures: keeping the concentration ratio constant, or keeping one concentration constant and changing the other one. Results show the membrane presents a weak cation-exchanger character, since the following values were obtained: Xf=−(2.5±0.2)×10−2 M, tK =(0.56±0.06), tCl=(0.44±0.05); taking into account these values, concentration dependence of membrane potential was predicted. Membrane electrical resistance, Rm, was obtained from Impedance Spectroscopy (IS) measurements using equivalent circuits as models, and the membrane porosity Θ=(0.11±0.02)% was also obtained from resistance values, which agrees very well with the value determined from geometrical parameters. From Rm, Δφm and Θ values, the diffusion coefficient of the ions in the membrane pores can be calculated, and the following average values were obtained: DK+=(1.9±0.4)×10−9 m2/s and DCl=(0.8±0.2)×10−9 m2/s, but for an average concentration higher than 0.06 M, their values do not differ practically from solution in agreement with the small negative charge previously indicated.  相似文献   

9.
Surface dynamics during latex film formation   总被引:3,自引:0,他引:3  
Surface dynamics during latex film formation has been investigated theoretically and experimentally by atomic force microscopy. The peak-to-valley distance, y(t), of the latex particles in the surface plane of the latex film decayed exponentially with time during film formation. A theoretical relationship between y(t) and time, t, is given by y(t)=y(0) exp[−t/τ], where y(0) is the value of y(t) when t is zero. τ is a characteristic constant related to the nature of polymer, the particle radius, the surface diffusion coefficient and the temperature. The relationship between the surface diffusion coefficient, Ds, y(0), the radius of the latex particles, R, temperature, T, and τ is given approximately by Ds=1.2×10−20y(0)2[2Ry(0)]2T/τ (cm2/s), where the units are manometers for y(0) and R, kelvin for temperature, and seconds for τ. By measuring the decay of y(t) with time, the surface diffusion coefficient can be obtained. The surface diffusion coefficient for a poly(methyl methacrylate-co-butylacrylate) (50:50) copolymer latex film was found to be A×10−13 cm2/s, A is temperature-dependent.  相似文献   

10.
J.M.G Cowie  G.H Spence 《Polymer》1998,39(26):7139-7141
Gels of crosslinked β-cyclodextrin have been prepared using dimethylacetamide containing lithium, sodium and potassium triflate salts.

Compositions were adjusted to produce materials with dry surfaces that showed no evidence of solvent leakage. Alternating current conductivity (σ) measurements of ion transport in these systems were made over the temperature range 290–360 K. Systems containing KCF3SO3 exhibited the best range of conductivity values from σ=10−4 S cm−1 (293 K) to σ=1.8×10−3 S cm−1 (360 K). These systems also show a linear dependence of log conductivity on 1/temperature, with activation energies for ion transport in the range 32–48 kJ mol−1.  相似文献   


11.
Nanometer perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) have been prepared using the citric acid complexing-hydrothermal-coupled method and characterized by means of techniques, such as X-ray diffraction (XRD), BET, high-resolution scanning electron microscopy (HRSEM), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption (TPD), and temperature-programmed reduction (TPR). The catalytic performance of these nanoperovskites in the combustion of ethylacetate (EA) has also been evaluated. The XRD results indicate that all the samples possessed single-phase rhombohedral crystal structures. The surface areas of these nanomaterials ranged from 20 to 33 m2 g−1, the achievement of such high surface areas are due to the uniform morphology with the typical particle size of 40–80 nm (as can be clearly seen in their HRSEM images) that were derived with the citric acid complexing-hydrothermally coupled strategy. The XPS results demonstrate the presence of Mn4+ and Mn3+ in La1−xSrxMnO3−δ and Co3+ and Co2+ in La1−xSrxCoO3−δ, Sr substitution induced the rises in Mn4+ and Co3+ concentrations; adsorbed oxygen species (O, O2, or O22−) were detected on the catalyst surfaces. The O2-TPD profiles indicate that Sr doping increased desorption of the adsorbed oxygen and lattice oxygen species at low temperatures. The H2-TPR results reveal that the nanoperovskite catalysts could be reduced at much lower temperatures (<240 °C) after Sr doping. It is observed that under the conditions of EA concentration = 1000 ppm, EA/oxygen molar ratio = 1/400, and space velocity = 20,000 h−1, the catalytic activity (as reflected by the temperature (T100%) for EA complete conversion) increased in the order of LaCoO2.91 (T100% = 230 °C) ≈ LaMnO3.12 (T100% = 235 °C) < La0.6Sr0.4MnO3.02 (T100% = 190 °C) < La0.6Sr0.4CoO2.78 (T100% = 175 °C); furthermore, there were no formation of partially oxidized by-products over these catalysts. Based on the above results, we conclude that the excellent catalytic performance is associated with the high surface areas, good redox properties (derived from higher Mn4+/Mn3+ and Co3+/Co2+ ratios), and rich lattice defects of the nanostructured La1−xSrxMO3−δ materials.  相似文献   

12.
We synthesized high-quality and oriented periodic mesoporous organosilica (PMO) monoliths through a solvent evaporation process using a wide range of mole ratios of the components: 0.17–0.56 1,2-bis(triethoxysilyl)ethane (BTSE): 0.2 cetyltrimethylammonium chloride (CTACl): 0–1.8 × 10−3 HCl: 0–80 EtOH: 5–400 H2O. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images indicated that the mesoporous channels within the monolith samples were oriented parallel to the flat external surface of the PMO monolith and possessed a hexagonal symmetry lattice (p6mm). The PMO monolith synthesized from a reactant composition of 0.35 BTSE: 0.2 CTACl: 1.8 × 10−6 HCl: 10 EtOH: 10 H2O had a pore diameter, pore volume, and surface area – obtained from an N2 sorption isotherm – of 25.0 Å, 0.96 cm3 g−1 and 1231 m2 g−1, respectively. After calcination at 280 °C for 2 h in N2 flow, the PMO monolith retained monolith-shape and mesostructure. Pore diameter and surface area of the calcined PMO monolith sample were 19.8 Å, 0.53 cm3 g−1 and 1368 m2 g−1, respectively. We performed 29Si and 13C CP MAS NMR spectroscopy experiments to confirm the presence of Si–C bonding within the framework of the PMO monoliths. We investigated the thermal stability of the PMO monoliths through thermogravimetric analysis (TGA). In addition, rare-earth ions (Eu3+, Tb3+ and Tm3+) were doped into the monoliths. Optical properties of those Eu3+, Tb3+ and Tm3+-doped PMO monoliths were investigated by photoluminescence (PL) spectra to evaluate their potential applicability as UV sensors.  相似文献   

13.
Phase transition phenomenon of the 1-dodecanol monolayer at the air/water interface was studied by the dynamic γ(t) curves and the adsorption isotherm obtained by ellipsometry at 20 °C. The surface-concentration adsorption isotherm clearly showed three abrupt increases at bulk concentration C of 1.3 × 10−9, 2 × 10−9 and 3.7 × 10−9 mol/mL, respectively. The 1st and the 3rd transitions observed herein, that were typical 2D first-order transitions, were consistent with the gas to liquid expanded (G–LE) and the liquid expanded to liquid condensed (LE–LC) phase transitions observed in a previous tensiometry study. The 2nd transition that occurred at C = 2 × 10−9 mol/mL was not identified from any previous dynamic surface-tension profiles. Judging from the substantial increase in the film thickness of the transition, it was believed that the orientation change of the adsorbed molecule was involved in the LE phase. A LEh and a LEv phase, that denoted the “lie-down” and “stand-up” types of adsorption, respectively, was used to describe this transition and a cusp, instead of a constant surface-tension region, was observed in the dynamic γ(t) curves for this transition. This suggested that, since the surface tension varied during the transition process, the newly identified LEh and LEv transition might not be the typical first-order type of phase transition.  相似文献   

14.
The pulsing of argon in a temporal analysis of products (TAP) reactor and reactor modeling of the response curves were used to measure the effective intraparticle diffusivities in porous materials. The diffusivity that can be measured is limited: (1) at the low end by intraparticle diffusion being too slow such that just a small fraction of the pulse gets into the pores to give an indistinguishable tail, which only measures that the diffusivity is smaller than an upper limit and (2) at the high end by intraparticle diffusion being too fast such that it gives a constant concentration in the pores, which only measures that the diffusivity is larger than a lower limit. The limits and range are slightly different for different particle and bed dimensions. A 9 mm long packed bed has a sensitive range of about 300-fold where there are discernible changes in the normalized pulse shape due to diffusivity changes. If small particles of about 50 μm are used, the range is from 1 × 10−10 to 3 × 10−8 m2/s, and if large particles of about 500 μm are used, the range is from 2 × 10−9to 5 × 10−7 m2/s.  相似文献   

15.
Molecular dynamics simulations were performed for ethane, propane, and n-butane in siliceous faujasite for different numbers of molecules per unit cell (loadings) at 300 K. Both the adsorbed molecules and the zeolite framework were modeled as flexible entities. A new semiempirical analytical potential function for the systems was constructed. From the mean-square displacement of the molecules, self-diffusion coefficients of 18.7 × 10−5, 13.3 × 10−5, and 4.3 × 10−5 cm2/s were calculated for ethane, propane, and n-butane, respectively at a loading of 8 molecules/unit cell. They compare well with experimental values from pulsed-field gradient NMR measurements (10 × 10−5, 9 × 10−5, and 6 × 10−5 cm2/s, respectively). Besides depending on the size of the hydrocarbon, the heats of adsorption and self-diffusion coefficients also strongly depend on the loading of adsorbate molecules. The results suggest that the new intermolecular force field can reasonably describe the adsorption and diffusion behavior of ethane, propane, and n-butane in faujasite zeolite.  相似文献   

16.
-Alumina-supported MFI zeolite membranes were modified by on-stream catalytic thermal cracking of methyldiethoxysilane (MDES) molecules inside the zeolitic channels during the separation of H2/CO2 gas mixture at 450 °C and atmospheric pressure. The MDES vapor was carried by the H2/CO2 feed gas and the effect of modification was monitored continuously through online analysis of the permeate stream. The modified membrane exhibited a significant increase in H2 selectivity over CO2 with a moderate decrease in H2 permeance. At 450 °C, the modified MFI membrane obtained a H2/CO2 permselectivity of 17.5 with H2 single gas permeance of 1.86 × 10−7 mol m−2 s−1 Pa−1 as compared to a permselectivity of 2.78 and permeance of 2.75 × 10−7 mol m−2 s−1 Pa−1 for the membrane before modification. The modified membrane also showed good performance and stability in separation of H2/CO2 gas mixture containing up to 28.4% water vapor at 450 °C and atmospheric pressure.  相似文献   

17.
Bearing in mind the excellent dielectric properties at high frequency of some niobates like ZnNb2O6, Zn3Nb2O8, BaNb2O6, Ba5Nb4O15 (r 20–45, tan δ < 10 × 10−4 and ρi > 1010 Ω cm), synthesis, sintering and properties of these oxides are reported. The lowering of their sintering temperature has been investigated for these four ceramics using sintering aids. Using appropriate additive, it is possible to densify these ceramics at a temperature for which base metal electrodes, e.g. Cu and Ag can be employed. Two formulations were found to be sinterable at 1000 °C (lower than the copper melting point) whereas a third formulation is co-sinterable with silver electrodes. For this later, the dielectric properties are globally maintained in comparison with the pure compound sintered at 1200 °C. This result makes this formulation suitable for silver based passive components devices manufacturing.  相似文献   

18.
Modification of cobaltic oxide (obtained from the reduction of high-valence cobalt oxide and assigned as R230, SBET = 100 m2 g−1) with different loading of ceria was proceeded using the impregnation method (assigned as CeX/R230, X = 4, 12, 20, 35 and 50 wt%). The CeX/R230 catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption at −196 °C, temperature-programmed reduction (TPR) and transmission electron microscopy (TEM). Their catalytic activities towards the CO oxidation were studied in a continuous flow micro-reactor. The results revealed that the optimal modification, i.e., Ce20/R230, can increase the surface area (SBET = 109 m2 g−1) of cobaltic oxide, further weaken the bond strength of CoO and lower the activation of CO oxidation among CeX/R230 catalysts due to the combined effect of cobaltic oxide and ceria. The Ce20/R230 catalyst exhibited the best catalytic activity in CO oxidation with T50 (temperature for 50% CO conversion) at 88 °C.  相似文献   

19.
This communication reports experimental efforts to synthesize defect-free mesoporous MCM-48 membranes with improved gas flux. We demonstrate a facile and inexpensive method of synthesizing defect-free supported MCM-48 membranes with improved N2 and CO2 permeance (>2 × 10−7 mol/m2 s Pa) employing asymmetric supports for the membrane synthesis which contain layers of macropores possessing different pore sizes. The membranes prepared on asymmetric -alumina supports displayed higher gas permeance than those fabricated on symmetric supports (N2 permeance <10−7 mol/m2 s Pa) as confirmed by unsteady-state gas permeation experiments. Further improvement in gas permeance was achieved by covering one face and the sides of the support with a ceramic tape during membrane synthesis.  相似文献   

20.
Adsorption of metals by clay minerals is a complex process controlled by a number of environmental variables. The present work investigates the removal of Cu(II) ions from an aqueous solution by kaolinite, montmorillonite, and their poly(oxo zirconium) and tetrabutylammonium derivatives. The entry of ZrO and TBA into the layers of both kaolinite and montmorillonite was confirmed by XRD measurement. The specific surface areas of kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite were 3.8, 13.4, 14.0, 19.8, 35.8 and 42.2 m2/g, respectively. The cation exchange capacity (CEC) was measured as 11.3, 10.2, 3.9, 153.0, 73.2 and 47.6 meq/100 g for kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite, respectively. Adsorption increased with pH till Cu(II) ions became insoluble in alkaline medium. The kinetics of the interactions suggests that the interactions could be best represented by a mechanism based on second order kinetics (k2 = 7.7 × 10−2 to 15.4 × 10−2 g mg−1 min−1). The adsorption followed Langmuir isotherm model with monolayer adsorption capacity of 3.0–28.8 mg g−1. The process was endothermic with ΔH in the range 29.2–50.7 kJ mol−1 accompanied by increase in entropy and decrease in Gibbs energy. The results have shown that kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutyl-ammonium derivatives could be used as adsorbents for separation of Cu(II) from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号