首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
纳米TiO2具有合适的禁带宽度(3.2 eV)、良好的光电化学稳定性、价格低廉、易牢固吸附染料等优点,目前仍是应用于染料敏化太阳能电池(DSSC)主要的半导体材料。TiO2光阳极是DSSC的重要组成部分之一,其晶体的形貌与DSSC的光电性能密切相关。本文综述了应用于DSSC中不同形貌TiO2光阳极,重点探讨了常规TiO2光阳极形貌,如纳米粒子、纳米棒、纳米线、纳米管;对新型TiO2光阳极及复合光阳极的形貌也作了介绍。讨论了不同形貌TiO2光阳极的制备方法及其结构对DSSC光电性能的影响,提出TiO2光阳极今后的研究方向是将不同形貌光阳极进行复合或混合掺杂来提高电子传输速率、优化TiO2薄膜厚度、控制TiO2薄膜中晶体结构抑制电荷再结合、提高电荷传输效率。  相似文献   

2.
染料敏化太阳能电池(dye-sensitized solar cells,DSSC)由于工艺简单、价格便宜、转换效率高等优点而受到大量关注。本文介绍了染料敏化太阳能电池的基本结构和工作原理,综述了染料敏化太阳能电池的研究现状,论述了光阳极上半导体薄膜的制备、改性方法;阐述了敏化染料和氧化还原电解质的要求、特点和分类。指出高性能半导体薄膜、光谱响应宽稳定性好的敏化染料以及高效全固态电解质的研发与应用是今后的主要研究方向。  相似文献   

3.
染料是染料敏化太阳能电池的重要组成部分,其中浸染料时间会直接影响染料的吸附量与光阳极的微观结构,本文重点考察了浸染料时间对电池性能的影响,研究发现,当浸染料时间为为3h时,DSSC的性能较好。  相似文献   

4.
近年来,染料敏化太阳能电池(DSSC)由于低价格、易于制造成大面积、具有较宽的光谱响应范围,可接受的理论转换效率、制造工艺简单、对原料纯度要求不高、寿命长、对环境友好、应用前景广阔等优点而备受关注。染料光敏剂是DSSC的核心材料之一,其性能的优劣将对DSSC光电转化效率起着决定性的作用。介绍了DSSC的基本构造和光电原理,综述了作为光敏化剂的各种卟啉类有机化合物在染料敏化纳米晶太阳能电池中的应用。  相似文献   

5.
纤维状染料敏化太阳能电池光阳极的研究进展   总被引:1,自引:0,他引:1  
文章主要简单介绍了染料敏化太阳能电池的基本结构和工作原理,着重阐述了以金属纤维、导电光纤、碳纤维以及复合纤维作为纤维状染料敏化太阳能电池(Fiber-shaped Dye-Sensitized Solar Cells,FDSSCs)光阳极基底的研究现状;最后对FDSSCs光阳极基底的未来的发展和研究方向进行了展望。  相似文献   

6.
染料敏化太阳电池TiO2光阳极研究进展   总被引:2,自引:0,他引:2  
纳米TiO2是目前性能最为优良的染料敏化太阳电池(DSSC)光阳极材料。文章系统综述了优化纳米TiO2光阳极的染料吸附、电子传输、再生染料等性能的技术和方法,主要包括纳米TiO2光阳极薄膜微结构的调控、TiO2光阳极的离子/元素掺杂、TiO2光阳极的表面包覆、TiO2光阳极的表面处理等方面的国内外研究进展,并分析了目前TiO2光阳极存在的主要问题及未来的发展方向。  相似文献   

7.
以葡萄皮乙醇提取液作为敏化剂用于染料敏化太阳能电池,光电转换效率达到0.81%。不同pH值下,葡萄皮色素敏化的光阳极的单色光光电转换效率相差较大。在酸性介质中的吸光谱能较好的满足太阳能电池对吸光的需求。采用稀盐酸处理阳极膜的方法,使染料与膜结合性能提高。光子捕获能力增强,电池的TiO2/染料/电解质界面间电子传输阻抗减小,DSSC的光电装换效率达到1.43%,电流密度和光电转换效率分别提高了48.5%和76.5%。  相似文献   

8.
通常,染料敏化纳米太阳能电池(dye-sensitized solar cells,DSSCs)使用纳米金属氧化物来作为光阳极,如纳米TiO2,作为N型半导体通过连接染料来建立光阳极的。在光阳极中金属氧化物连接染料使DSSC的吸收光谱扩展到可见光谱区。文章研究在光阳极中添加导电碳黑使其成为纳米TiO2和染料之间的纽带。实验中使用粉末涂敷法在透光率约90%导电玻璃上涂覆纳米TiO2层在450℃烧结30 min,自然冷却然后再浸在染料和碳黑的混合物中敏化制得光阳极。添加的导电碳黑起到催化剂的作用,有助于染料电子的激发和纳米TiO2导带的增加并且减小了复合阻抗。结果表明,添加0.05 g导电碳黑的DSSCs光电性能最佳。开路电压增加了约33.9%,短路电流密度从4.385 mA/cm2增加到7.637mA/cm2。  相似文献   

9.
随着太阳能利用技术的飞速发展,染料敏化太阳能电池的研究也取得了长足的进步.在对染料敏化太阳能电池结构分析和机理描述的基础上,对高性能染料敏化太阳能电池的光敏剂结构、光阳极组成、电解质成分以及对电极材料等的要求进行了探讨.同时,阐述了染料敏化太阳能电池常用表征参数,短路电流和开路电压越大,转化效率越高,电池性能越好.重点...  相似文献   

10.
以水热法加入不同浓度的HCl溶液制备二氧化钛胶体。采用刮涂法制备柔性染料敏化太阳能电池(DSSC)光阳极,对其进行各种性能研究,以此来分析不同制备条件对DSSCs的影响。结果表明,盐酸能够促进TiO_2颗粒的分散,TiO_2颗粒与柔性ITO/PEN导电衬底的连接以及TiO_2薄膜的染料吸附量。经优化,测得含有0.05 M(mol/L)HCl的柔性DSSC的光电转换效率为2.84%。  相似文献   

11.
In this article, we grew zinc oxide (ZnO) samples with different morphologies, e.g. film, nanowire and nanosheet, with electrochemical deposition (ECD) by controlling the precursor concentration and the growth mechanism was also discussed. The morphology influence on the photovoltaic conversion efficiency of the dye-sensitized solar cells (DSSC) assembled with different ZnO photoanodes was investigated by measuring current density–voltage (JV) curve, quantum efficiency (QE) spectrum and electrochemical impedance spectrum (EIS). It was found that the DSSC constructed with ZnO nanowire array as photoanode can absorb more dye, improve the photon utilization rate and provide rapid collection channels for the photoexcited carriers. Therefore, the photovoltaic conversion efficiency of ZnO nanowire DSSC was improved.  相似文献   

12.
H Dai  Y Zhou  Q Liu  Z Li  C Bao  T Yu  Z Zhou 《Nanoscale》2012,4(17):5454-5460
Well-defined ZnO nanowire (NW) arrays with controlled dendritic structures were successfully built on a stainless steel mesh and utilized as photoanodes for the fabrication of large-area, flexible dye-sensitized solar cells (DSSCs). The dendritic nanostructure proves favorable for the improvement of the overall light conversion efficiency of the DSSC. An optimized etching time for the affixion of ZnO seeds on the ZnO backbone of the dendritic "tree" and the controlled growth conditions of the branch NW are critical to achieve high conversion efficiency solar cells.  相似文献   

13.
In this work we present the comprehensive design of lithium titanate nanotubes (LiTNT) as semiconductors for DSSC photoanodes. The synthesis and characterization of Li1.82Na0.18Ti3O7.nH2O nanotubes was performed and a prototype of cell using this material was assembled. The cell exhibited a 7.7% efficiency and a relatively high open circuit voltage, Voc?=?0.72?V. In comparison with previously obtained hydrogen titanate nanotubes (HTNT), improvements have been achieved, like better charge carriers’ lifetime and lower series resistance. In order to study this system, we carried out previous DFT simulations for this lithium titanate nanotubes through different model's complexity levels which were able to correctly predict its properties. Due to the improvements achieved this system would encourage further studies with the aim to explore its potential for solar cells applications.  相似文献   

14.
《Ceramics International》2022,48(5):6037-6045
Amine-functionalized ZnO nanorods@graphene oxide (ZnO-NR/NH2/GO) nanocomposites prepared by a facile solution route have been investigated through X-ray diffraction, diffuse reflectance spectra, Raman spectra, scanning electron microscopy and transmission electron microscopy. The amine-functionalized ZnO-NR/NH2/GO-2 nanocomposite exhibits very strong visible light absorption. Dye-sensitized solar cell (DSSC) made of ZnO-NR/NH2/GO-2 nanocomposite (with optimum 2 wt % GO) photoanode delivers a power conversion efficiency (PCE) of 3.76% which is much higher than the efficiency of unmodified ZnO-NR/GO photoanodes based DSSC (2.27%). The enhancement of PCE is primarily caused by the increased current density, attributed to the incorporation of aminosilicate and GO on the surface of ZnO-NRs which facilitates rapid transfer of electron from conduction band of ZnO to conducting surface of FTO. This diminished recombination of photogenerated electrons and holes improve the electron transfer at the photoanode/electrolyte interfaces.  相似文献   

15.
The effect of lithium iodide (LiI: 0–85 wt%) on the electrochemical behavior of agarose-based polymer electrolytes for dye-sensitized solar cells (DSSC) was investigated. Fourier Transform Infrared Spectroscopy (FTIR) and scanning electronic microscopy (SEM) were employed to characterize the interactions between polymer matrix and salt and the morphology of the agarose electrolytes, respectively. From the AC impedance spectra study, it was determined that the conduction behavior of the agarose-based polymer electrolyte matches the “salt-in-polymer” like behavior of low LiI content (0–25 wt%) and “polymer-in-salt” like behavior of high LiI content (25–85 wt%). Detailed analysis of characteristic electrochemical processes occurring in DSSC with these agarose electrolytes was also obtained by employing the EIS technique. The impedance spectra showed that the electron lifetime of DSSC was shortened with increasing LiI concentration, while the charge transfer resistance and charge recombination resistance were reduced when LiI concentration was increased.  相似文献   

16.
Cross-linked gel polymer electrolytes containing aluminum oxide nanoparticles are prepared by in situ chemical cross-linking after injection of the gel precursor into the dye-sensitized solar cell (DSSC). This makes it possible to directly solidify the electrolyte in the cell and maintain good interfacial contacts between the electrolyte and the electrodes without suffering loss of performance in the DSSC. These gel polymer electrolytes exhibit high ionic conductivity and favorable charge transfer reaction at the interfaces of electrodes and electrolyte. The quasi-solid-state DSSC assembled with optimized gel polymer electrolyte exhibited remarkably high conversion efficiency, 6.34% at 100 mW cm−2, and better long-term stability, as compared to the DSSC with liquid electrolyte.  相似文献   

17.
A flexible dye-sensitized solar cell (DSSC) was fabricated using a photoanode consisting of an array of TiO2 nanotubes (TNT) filled with a nanocomposite of TiO2 (P90) and nanographite. The array of TNT was obtained by anodic oxidation of Ti foil, and this Ti foil with TNT was used as the photoanode of the DSSC. Each tube in the array has an average diameter of 100 nm. The morphologies of the array of TNT were obtained both after and before filling them with the TiO2/graphite nanocomposite, using a field-emission scanning electron microscopy (FE-SEM). DSSC with photoanode consisting of the nanocomposite (photoanode designated as Graphite/P90-TNT) rendered a light-to-electricity conversion efficiency (η) of 5.75%. In contrast, the cells with photoanodes consisting of only TNT (photoanode designated as TNT) and TNT filled with P90-TiO2 (photoanode designated as P90-TNT) exhibited efficiencies (η) of 4.44% and 5.14%, respectively. The enhancements in the η’s in favor of the cells with P90-TNT and Graphite/P90-TNT were attributed to the filled P90 and nanocomposite, respectively. The filled particles were assumed to provide more conductive pathways for electron transfer and prolonged lifetime for electrons in the film of TNT. The results were substantiated by light-absorption values, incident-photo-to-current efficiency (IPCE) curves, Nyquist and Bode plots of electrochemical impedance spectroscopy (EIS), and photopotential transient curves.  相似文献   

18.
Negative-charged polystyrene (PS) microspheres were prepared through a soap-free emulsion polymerization method using potassium persulfate as initiator. Three-dimensionally ordered macroporous TiO2 films were fabricated using the high-quality PS colloidal crystals templates obtained via a horizontal deposition method. The as-prepared macroporous TiO2 films were applied as the photoanodes in dye-sensitized solar cell (DSSC). The microstructure of the products were characterized by X-ray diffractometer, fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption analyzer. The results showed that the macroporous TiO2 films replicated well the 3D ordered structure derived from PS colloidal crystal templates and revealed a relatively large specific surface area (69.99 m2/g), which could increase the capacity of TiO2 film anode for absorbing dyes and scattering light. The photocurrent–voltage (IV) characteristics of DSSC were measured by a digital source meter under simulated solar light. The results indicated that the introduction of an ordered macroporous TiO2 interfacial layer increased the photovoltaic conversion efficiency, which was improved by 68 % from 3.61 to 6.08 %, as compared to a device using a bare P25 TiO2 photoanode. Our results showed that the hierarchically ordered macroporous TiO2 bilayer films photoanode for DSSC could be helpful to improve the photovoltaic conversion efficiency.  相似文献   

19.
《Ceramics International》2022,48(15):21812-21823
It is imperative to develop innovative efficient photoelectrode materials for high-performance dye-sensitized solar cells (DSSCs). In this work, cubic spinel Zn2SnO4 (ZTO)+(5, 10, 15, 20%) zeolite imidazole framework-8 (ZIF-8) nanoparticles were applied as photoanode materials of DSSC devices. The Zn2SnO4 was effectively synthesized in a simple and cost-effective manner by carefully controlling the hydrothermal conditions. The Zn2SnO4/ZIF-8 nanocomposite photoelectrodes were coated over the TiO2 compact layer to decrease charge recombination at the transparent conductive oxide/mesoporous interface. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Brunauer–Emmett–Teller (BET) isotherms, Fourier transform infrared spectroscopy (FT-IR) and electrochemical impedance spectroscopy (EIS) analysis methods were used to study the properties of all nanostructured photoanodes. In addition, the effects of Zn2SnO4/ZIF-8 nanocomposites were evaluated on DSSCs performances. The results clearly showed that adding ZIF-8 to Zn2SnO4 improved the photovoltaic performance of the fabricated DSSCs. Furthermore, compared to pure Zn2SnO4 NPs, Zn2SnO4+15% ZIF-8 increased open circuit voltage (VOC) from 0.64 to 0.77 V and short current density (JSC) from 6.89 to 11.27 mA/cm2. The Zn2SnO4+15% ZIF-8 photoanodes increased the power conversion efficiency (PCE) of DSSC by about 195% (from 2.02 to 3.94%) relative to the pure ZTO photoanode. This was due to the fact that the Zn2SnO4+15% ZIF-8 nanocomposite had the quickest electron transport rate, the best electron collecting efficiency, and the greatest charge recombination resistance, all of which are extremely advantageous to improve device efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号