首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
模糊C均值算法(FCM)是一种用于聚类的最流行的技术。不过,传统的FCM使用欧氏距离作为数据集的相似准则,从而导致数据集的划分有相等的趋势。而数据集的形状和簇的密度对聚类性能有高度影响。为了解决这个问题,提出基于簇密度的距离调节因子以修正相似性度量。同时,针对模糊C-均值(FCM)聚类算法对初始聚类中心选择敏感,易陷入局部最优的问题,采用量子粒子群优化算法以获取全局最优解。仿真实验证明,改进的聚类算法(QPSO-FCM-CD)具有良好的性能。  相似文献   

2.
李引  毛力  须文波 《计算机工程与应用》2012,48(35):151-155,173
针对模糊C-均值(FCM)聚类算法对初始聚类中心选择敏感,易陷入局部最优的问题,提出一种量子粒子群优化改进的模糊C均值聚类算法。该算法引入的基于新距离标准的量子粒子群(AQPSO)算法不仅可以降低初始点敏感度,较快地收敛到最优解,而且能够提高全局搜索能力。仿真实验证明,该融合算法在摆脱局部最优区域,保证收敛速度同时使得聚类效果较好。  相似文献   

3.
基于粒子群优化的模糊C-均值聚类改进算法   总被引:3,自引:3,他引:3  
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果.  相似文献   

4.
《微型机与应用》2014,(15):40-42
提出了一种基于量子粒子群的改进模糊聚类图像分割算法。针对FCM图像分割算法对聚类中心初始值比较敏感的缺点,利用量子粒子群优化算法强大的全局搜索能力寻找最优解,能够有效降低图像分割算法对初始值的依赖程度;同时,用一种新的基于簇密度的距离度量公式来计算图像特征点与聚类中心点的距离,其在确定类中心时考虑数据集的全局信息,并且在迭代过程中采用动态隶属度,能够降低噪声干扰。仿真实验结果证明改进算法具有较好的性能。  相似文献   

5.
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高.  相似文献   

6.
为了解决模糊C-均值(FCM)聚类算法的固有缺陷,提出基于混沌粒子群的模糊C-均值聚类算法(CPSO-FCM).针对FCM对聚类初始值的敏感度问题,辅以粒子群算法以避免随机选取的聚类数和聚类中心所导致的结果不一致.通过引入混沌序列,在粒子的位置和速度上与原有粒子群优化算法所得计算值加以比较,取优者.这样不仅能够提高算法全局搜索能力,也可有助于粒子跳出局部最优.同时定义加速因子与逃逸算子对粒子移动速度加以优化,以加速收敛.实验结果表明,CSPO-FCM算法稳定性强,收敛速度快,且聚类的准确率高,效果较好.  相似文献   

7.
在综合分析标准的模糊C-均值聚类算法和条件模糊C-均值聚类算法基础上,对模糊划分空间进行修改,进一步弱化模糊划分矩阵的约束,给出一种扩展的条件模糊C-均值聚类算法。算法的划分矩阵和原型不依赖于背景约束及模糊划分矩阵的隶属度总和。实验结果表明:该算法可以得到不同的聚类原型,并具有很好的聚类效果。  相似文献   

8.
改进的模糊C-均值聚类算法   总被引:2,自引:1,他引:2       下载免费PDF全文
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。  相似文献   

9.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。  相似文献   

10.
新的混合模糊C-均值聚类算法   总被引:1,自引:1,他引:1  
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法.它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO).将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度.实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善.  相似文献   

11.
针对软子空间聚类算法搜寻聚类中心点容易陷入局部最优的缺点,提出在软子空间聚类框架下,结合量子行为粒子群优化(QPSO)和梯度下降法优化软子空间聚类目标函数的模糊聚类算法.根据QPSO全局寻优的特点,求解子空间中全局最优中心点,利用梯度下降法收敛速度快的特点,求解样本点的模糊权重和隶属度矩阵,最终获取样本点的最优聚类结果.在UCI数据集上的实验表明,文中算法可提高聚类精度和聚类结果的稳定性.  相似文献   

12.
提出了一种基于拉子群优化的可能性c均值(Possibilistic Gmeans, PCM)聚类改进方法。该方法首先通过 改进PCM算法的目标函数来计算数据模式的隶属度矩阵和聚类中心完成粒子编码,从而降低算法对初始中心的敏 感,提高聚类的精度;其次,通过粒子群优化(Particle Swarm Optimization, PSO)算法对编码进行优化,以有效地克服 PCM聚类算法容易导致聚类一致性和陷入局部最优解的缺点,减少算法的迭代次数。通过人造数据集和UCI数据 集上的实验,表明该算法在计算复杂度、聚类精度和全局寻优能力方面表现得较为突出。  相似文献   

13.
提出一种基于模糊C-均值算法和粒子群优化算法的混合聚类算法,该算法利用粒子群优化算法全局寻优的特点,有效地克服了模糊C-均值算法对初始值敏感、易陷入局部最优的缺点.实验表明,该算法具备良好的聚类效果.  相似文献   

14.
基于QPSO的数据聚类   总被引:1,自引:0,他引:1  
在KMeans聚类、PSO聚类、KMeans和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用KMeans聚类的结果重新初始化粒子群,结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。KMeans算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO  相似文献   

15.
李亚非  曹长虎 《计算机工程》2011,37(16):167-169
为充分发挥粒子群优化算法和遗传算法各自的优势,提出一种新的基于粒子群和遗传算法的协同进化算法,并将其应用于聚类分析。通过构建2个相互竞争的种群,采用相对适应度度量方法,在一个纯自举的过程中产生最优竞争个体。在现实世界数据集上的仿真实验表明,该算法在收敛精度方面优于基于遗传算法的聚类方法和基本粒子群优化聚类算法。  相似文献   

16.
毕晓君  盛磊  陈剑 《计算机工程》2011,37(23):149-151
采用传统方法设计的S盒性能较差,而常用智能设计方法又存在设计时间过长、容易陷入局部最优的缺点。为此,提出一种基于改变粒子群优化算法的S盒优化设计方法。通过改变惯性权重来提高搜索速度和精度,从而增大算法效率。实验结果表明,该方法可以快速地搜索到能有效抵抗差分密码分析和线性密码分析的S盒,改善其密码性能。  相似文献   

17.
刘衍民  牛奔  赵庆祯 《计算机工程》2011,37(14):152-154
为更有效地求解多目标优化问题,提出一种基于均匀设计的聚类多目标粒子群算法UCMOPSO。采用基于均匀设计的交叉操作尽可能地获得目标空间中均匀分布的非劣解,帮助种群跳出局部最优解,并通过一种新的聚类操作选择外部存档中有代表性的非劣解,从而控制外部存档规模,降低计算复杂度。对基准函数的测试结果表明,UCMOPSO算法相比同类算法在收敛性和分布性方面具有优势。  相似文献   

18.
李睿  苑柳青  李明 《计算机工程》2011,37(13):153-155
针对Unscented粒子滤波(UPF)算法中的粒子退化及重采样引起的粒子枯竭等问题,利用粒子群优化算法使粒子通过比较其当前值与最优粒子的适应度值调整自身速度,向高似然域移动,寻找最优位置,并对重采样过程进行优化,以缓解粒子的退化及枯竭问题。实验结果证明,该算法提高了UPF算法的状态估计精度。  相似文献   

19.
聚类是数据挖掘中重要的数据处理方法.文中提出改进的离散多目标量子微粒群聚类算法.针对类中心数目未知的情况,引入整数编码策略,基于Canopy策略预测类中心的数目,设计有效的微粒群初始化策略.通过引入与、并和差异算子,定义改进的离散量子微粒更新公式.将文中算法应用于7组真实数据集,并对比2种典型单目标聚类算法和3种多目标聚类算法,验证文中算法性能.  相似文献   

20.
介绍量子粒子群优化(QPSO)算法的硬件实现方法并对其进行性能分析。将QPSO算法应用于现场可编程门阵列开发板,并对比了不同硬件实现方式的运算速度和资源耗费。采用硬件并行和流水技术缩短算法的运算时间,仿真结果表明,硬件化QPSO的运算时闻为原Matlab中运算时间的0.032%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号