首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用真空热压-内氧化烧结法制备TiC体积分数分别为0、10 vol%、20 vol%的TiC/Cu-Al2O3复合材料,观察和分析了其显微组织、测试和分析了其性能;利用Gleeble-1500D热力模拟试验机,研究了3种复合材料在变形温度为450~850℃,应变速率为0.001~1 s-1条件下的热变形行为。结果表明,复合材料的相对密度在97.1%以上,随着TiC含量的增加,其导电率下降、硬度升高。TiC/Cu-Al2O3复合材料的真应力-真应变曲线主要以动态再结晶机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;高温变形条件下TiC/Cu-Al2O3复合材料流变应力本构方程可以用双曲线正弦方程和Z参数描述;其热变形激活能分别为163.939 k J/mol(0 vol%TiC)、164.142 k J/mol(10 vol%TiC)和210.762 k J/mol(20 vol%TiC)。  相似文献   

2.
采用真空热压-内氧化烧结方法制备20%Mo/Cu-Al2O3复合材料,测试其性能并观察分析其微观组织。利用Gleeble-1500D热力模拟试验机在温度为350~750℃、应变速率为0.01~5 s-1及总应变量0.5的条件下,对20%Mo/Cu-Al2O3复合材料热变形过程中的流变应力与应变之间的关系进行研究。结果表明:20%Mo/Cu-Al2O3复合材料的组织分布均匀,未观察到明显的团聚现象及孔洞,致密度较高。在材料基体上,原位内氧化生成的纳米级Al2O3颗粒呈弥散分布,增加了基体的强度。复合材料的高温流动应力—应变曲线以动态再结晶软化机制为主,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力—真应变曲线基础上建立的高温变形本构方程较好地表征了此复合材料的高温流变特性,其计算结果与实验结果吻合较好。  相似文献   

3.
采用真空热压-内氧化烧结法成功制备Ti C粒径分别为3.2和25μm的30 vol%Ti C/Cu-Al2O3复合材料,对其进行了显微组织观察分析和性能测试;并利用Gleeble-1500D热力模拟试验机,研究了该复合材料在变形温度为450~850℃,应变速率为0.001~1 s-1条件下的热变形行为。结果表明:随着Ti C粒径的增大,复合材料的相对密度和导电率有所增加,而硬度略有下降。Ti C/Cu-Al2O3复合材料的真应力-真应变曲线主要以动态再结晶机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;高温变形条件下30 vol%Ti C/Cu-Al2O3复合材料流变应力本构方程可以用双曲线正弦方程和Z参数描述;热变形激活能随Ti C粒径增大而略有下降,其值分别为269.059 k J/mol(3.2μm)和234.288 k J/mol(25μm)。  相似文献   

4.
采用真空热压烧结法制备了纳米Al2O3弥散强化铜为基体,W颗粒为增强相的W(50)/Cu-Al2O3新型复合材料。在Gleeble-1500D热模拟机上对真空热压烧结W(50)/Cu-Al2 O3复合材料进行等温热压缩实验,研究了在变形温度为650~950℃;变形速率为0.01~5 s-1;最大真应变为0.7条件下的流变应力行为。结果表明:在实验条件下,复合材料W(50)/Cu-Al2O3存在明显的动态再结晶特征,即变形初期,流变应力随着应变量的增大而迅速增大,达到峰值之后流变应力逐渐趋于平稳,不随应变的增加而明显变化。变形温度和变形速率对流变应力影响显著,随着温度的升高和应变速率的减小,峰值应力逐渐减小,并且在晶界交叉处出现再结晶晶粒,并逐渐增多。复合材料的主要软化机制为动态再结晶。建立了复合材料高温变形时的流变应力本构方程,并确定了热变形激活能Q为176.05 kJ/mol。  相似文献   

5.
在Gleeble-1500D热模拟试验机上对Cu-Al2O3复合材料进行等温压缩试验,研究了变形温度600~950℃,应变速率0.001~1 s-1条件下的热变形行为。结果表明,Cu-Al2O3复合材料的流变应力-应变曲线是典型的动态再结晶类型,流变应力随应变量的增加均呈现先增大后减小,之后达到一个稳定的趋势。热变形过程中的稳态流变应力可用双曲正弦本构方程.ε=8.909×105[sinh(0.012486σ)]5.4343.exp[-133.02/(RT)]来表示。根据动态材料模型以及DMM加工图理论,建立了Cu-Al2O3复合材料的热加工图,据此确定Cu-Al2O3复合材料的最佳热变形工艺参数范围为:变形温度850~950℃,应变速率0.01~0.1 s-1。  相似文献   

6.
在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。  相似文献   

7.
利用Gleeble-1500D热力模拟试验机,在变形温度为350~750℃、应变速率为0.01~5 s-1、总应变量约为0.5的条件下,对复合材料的高温热变形行为及动态再结晶临界条件进行研究。结果表明:弥散铜-WC复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的Al2O3/Cu-WC复合材料高温变形本构模型较好地表征了其高温流变特性,其热激活能为208.35 kJ/mol;同时,利用其θ-σ曲线出现拐点及-dθ/dσ曲线上出现最小值研究了动态再结晶的临界条件。  相似文献   

8.
利用Gleeble-1500热力模拟试验机,在温度为350 ~ 750℃、应变速率为0.01 ~5 s-1、总应变量0.7的条件下,对10%Mo/Cu-Al2O3复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行研究和分析.试验结果表明:10% Mo/Cu-Al2O3复合材料高温流动应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;同时,利用动态材料模型(DMM)加工图分析了10%Mo/Cu-Al2O3复合材料变形机制和失稳机制,并最终确定了热加工工艺参数选取范围:变形温度600 ~750℃、应变速率0.01 ~0.1 s-1.  相似文献   

9.
采用Gleeble3500热模拟试验机对Ti2AlC/TiAl(Nb)复合材料进行高温压缩实验,实验温度范围为1000℃~1150℃,应变速率范围为10-3s-1~10-1s-1,工程压缩应变为50%,得到复合材料高温压缩真应力-真应变曲线。结果表明,Ti2AlC/TiAl(Nb)复合材料的高温变形流变应力对温度及应变速率敏感;流变应力随应变速率的增大而增大,随温度的升高而减小,可用位错-颗粒交互作用模型解释复合材料的应力-应变行为;Zenner-Hollomon参数的指数函数能够较好的描述该合金高温变形时的流变应力行为。建立的本构方程为ε=9.31×1011[sinh(0.0044σ)]2.52exp[-366.2/(RT)],其变形激活能为366.2kJ/mol。  相似文献   

10.
利用Gleeble-1500D热模拟试验机,在温度650~950℃、应变速率0.01~5s-1、总应变量0.7的条件下,对W-75%Cu复合材料高温塑性变形行为及其热加工图进行研究和分析。结果表明:W-75%Cu复合材料高温流动应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-75%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-75%Cu复合材料DMM加工图分析其变形机制和失稳机制,可确定其热加工工艺参数应优先选择变形温度800~950℃、应变速率0.01~0.1s-1。  相似文献   

11.
采用Gleeble-1500热模拟试验机对30%SiCP/2024A1复合材料在温度为623~773 K、应变速率为0.01~10 s-1变形条件下热变形流变行为进行了研究。由试验得出变形过程中的真应力真应变曲线,建立热变形本构方程和功率耗散图。结果表明,复合材料的流变应力随温度的升高而降低,随应变速率的增大而升高,说明该复合材料是一个正应变速率敏感的材料。该复合材料热压缩变形时的流变应力行为可采用Zener-Hollomon参数的双曲正弦形式来描述,热变形激活能Q为571.377 kJ/mol。高温高应变速率条件下的功率耗散系数大,该变形区发生了组织转变。  相似文献   

12.
采用Gleeble-3800热模拟试验机对Mo-Nb单晶材料的高温流变应力变化规律进行了热模拟实验研究,变形温度区间为1100~1300℃,应变速率为0.001~10 s~(-1),变形程度为50%,真应变量为0.7。结果表明,变形温度和变形速率对Mo-Nb单晶材料的流变应力有较大影响,Mo-Nb单晶材料的真应力-真应变曲线表现出峰值、应变软化和稳态流动等特征。采用修正Arrhenius双曲正弦函数建立了Q、A、n、α等材料常数与真应变的函数关系式,计算了在试验条件下的各种材料参数,推导了Mo-Nb单晶材料高温变形本构方程。  相似文献   

13.
采用普通的熔炼方法,利用钛与B_4C之间的化学反应制备7715D钛基复合材料.将该复合材料热加工后得到具有网篮组织的TiC和TiB混合增强的钛基复合材料,在900~1 050 ℃、初始应变速率为10~(-2)~3×10~(-4) s~(-1)时采用材料试验仪测量该钛基复合材料的力学性能.结果表明:该复合材料的室温和高温力学性能均有提高.在1 000 ℃、应变速率为3×10~(-4)s~(-1)时,所得复合材料的最大伸长率为625%,其真应力-真应变曲线呈二次硬化现象,该复合材料超塑变形性能良好.计算所得表观激活能为359~473 kJ/mol;超塑变形过程中的动态再结晶是网篮钛基复合材料获得较高伸长率的重要原因;合适的应变速率能促使网篮钛基复合材料发生动态再结晶,而合适的温度则能在促进超塑变形的同时限制晶粒长大;动态再结晶和晶粒的长大使真应力-真应变曲线中出现二次硬化现象.  相似文献   

14.
在Gleeble-1500D热模拟机上对纳米SiCp/Al复合材料试样进行了单向热压缩试验,研究其在变形温度为460~520℃、应变速率为0.1~5 s~(-1)条件下的高温变形行为。根据实验数据绘制出纳米SiCp/Al复合材料的真应力-真应变曲线,利用双曲正弦函数模型构建纳米SiCp/Al复合材料的应变补偿本构方程,并通过误差分析对该应变补偿本构方程的准确性进行验证。结果表明:纳米SiCp/Al复合材料的流变应力曲线均呈现出先升高至峰值随后缓慢下降的趋势,流变应力随着变形温度的升高和应变速率的降低而减小;在本文试验条件下纳米SiCp/Al热变形激活能的平均值为278.79 kJ/mol;通过应变补偿本构方程得到的流变应力预测值与试验值的线性相关系数为0.991,平均相对误差为2.05%。  相似文献   

15.
30CrNi3MoV钢的热变形行为及热加工图   总被引:1,自引:0,他引:1       下载免费PDF全文
储滔  沈慧  斯庭智 《金属热处理》2020,45(10):24-30
采用Gleeble-3500热模拟试验机对30CrNi3MoV钢进行单向热压缩试验,研究了其在变形温度950~1150 ℃、应变速率0.01~10 s-1的热变形行为,构建了应变补偿型流变应力本构方程,并绘制出该钢的热加工图。结果表明,30CrNi3MoV钢真应力-真应变曲线有3种不同特征:高温小应变速率时,表现为典型的动态再结晶过程;低温小应变速率时,曲线为动态回复特征;应变速率较大时,应力随应变的增大而增大,无明显的峰值应力。采用5次多项式拟合构建的应变耦合流变应力本构方程具有高的精确度,采用该方程获得的预测值与试验值的平均相对误差为3.2%,相关性系数R值为0.993。从热加工图中得到试验钢最佳的热加工工艺参数范围是:变形温度为1020~1150 ℃、应变速率为0.03~0.35 s-1。  相似文献   

16.
采用Gleeble-3500型热模拟试验机对高铁螺纹道钉钢TD16进行热压缩变形实验,探索该材料在不同温度和应变速率条件下的热塑性变形行为。研究温度与应变速率对真应力-真应变曲线的影响规律,结合显微组织分析,阐明真应力-真应变曲线发生变化的原因。结果表明,在低应变速率下,流变应力峰值较明显,具有明显的动态再结晶特征。在较高应变速率下,峰值应力不明显,流变应力曲线属于动态回复型,未发生动态再结晶。通过回归分析,建立高铁螺纹道钉钢TD16在实验条件范围内的峰值流变应力本构关系的数学模型。所建立的流变应力本构方程与实验值吻合较好,最大相对误差为7.03%,可以用该本构方程来预测高铁螺纹道钉钢TD16的高温流变行为。  相似文献   

17.
采用Gleeble-1500D热模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量为0.7的条件下,对25%W-Cu和50%W-Cu(质量分数)复合材料的热变形行为及其热加工图进行研究和分析。结果表明:此两种复合材料的高温流动应力—应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增大;在真应力—应变曲线基础上建立的W-Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用50%W-Cu复合材料DMM加工图分析了其变形机制和失稳机制,确定其热加工工艺参数应优先选择变形温度为650~700℃、应变速率为1~5 s-1,或者变形温度为850~950℃、应变速率为0.01~0.1 s-1。  相似文献   

18.
研究了2vol%Mg2B2O5w/6061铝合金复合材料在热变形过程中,不同变形温度、应变速率下流变应力的变化,并通过计算机拟合建立了热压缩变形本构方程。结果表明,压缩变形过程中复合材料的流变应力随着变形温度的升高而降低,随着应变速率的增大而升高。当应变速率在0.01~1.00/s之间时,材料呈现出动态回复特征。复合材料在热变形过程中的应变速率和流变应力关系符合双曲正弦函数关系。  相似文献   

19.
利用Gleeble1500热模拟试验机在温度范围600~900℃、应变速率范围10-2~10 s-1等对HC1150/1400MS马氏体钢试件进行等温拉伸试验,进而构建了马氏体钢热加工过程的数值模拟需要的高温本构模型,用以根据应变、应变速率及变形温度预测流动应力。试验得到该材料奥氏体组织在不同温度及应变速率下的真应力、真应变曲线,显示材料的流动应力随变形温度的降低和应变速率的提高而增大,随变形温度的升高和应变速率的降低而减小。选用修正的Arrhenius双曲正弦模型对其高温力学行为进行描述,采用四次多项式拟合获得Arrhenius本构方程中参数α,β,n1,n,ln A,Q与应变的对应关系,最终确定包含变形温度及应变速率的流变应力计算方程。采用拟合度表示计算应力与实测应力的相关性,拟合度结果表明该本构模型对HC1150/1400MS马氏体钢高温流动应力的预测较准确。  相似文献   

20.
采用热压烧结技术制备了原位自生的Al_2O_3-TiC/Cu复合材料。采用Gleeble-1500D热模拟试验机进行了Al_2O_3-TiC/Cu复合材料的单轴等温压缩试验。研究了Al_2O_3-TiC/Cu复合材料在不同应变速率和不同变形温度下的热变形行为,并建立了本构方程。结果表明:Al_2O_3-TiC/Cu复合材料的真应力-真应变曲线表现的热变形机制主要为动态回复,随着应变速率的增大或变形温度的降低,峰值应力增大;Al_2O_3-TiC/Cu复合材料的流变应力、流变温度和应变速率之间的关系可用双曲线正弦函数描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号