首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在300℃和400℃时,测量了带有和未带有铂催化剂的多孔ZnO陶瓷电阻率的变化及还原气体的化学变化,以便检验气体传感机理和铂添加物的影响。还原气体在传感器的表面上被氧化成CO_2和H_2O。铂添加物促进了还原气体的氧化,但是在400℃时没有导致电阻率变化的增大。 在考虑到部分氧化的碳氢化合物中间物以及铂上的氧化没有电子迁移的情况下,提出了气体传感过程的反应程序。  相似文献   

2.
以金属蒸气氧化法制备的纯纳米ZnO为气敏原料,通过丝网印刷技术在Al2O3基片上制得纯ZnO和掺杂ZnO的气敏元件阵列。结果表明,元件阵列具有低的功耗,纯ZnO气敏元件阵列在350~400℃对橙汁、可乐、酒精和汽油有较高的敏感性,灵敏度分别为2.9,2.9,53.5和43.4。通过Bi2O3+Cu2O的掺杂,可以降低纯ZnO的电导,并进一步提高气敏元件在250~350℃温度区间对汽油的敏感性。并对其气敏机理进行了探讨。  相似文献   

3.
紫外光照下ZnO基薄膜的光电和气敏特性研究   总被引:2,自引:0,他引:2  
用sol-gel法制备ZnO及掺杂Al3+的ZnO半导体薄膜,利用XRD和AFM对薄膜结构和形貌进行表征。测量了不同掺Al量的薄膜在紫外光照射下电阻的变化,发现随着掺Al量的增大,薄膜在紫外光(波长为365nm)照射后其电阻先减小后增大。在室温下,对薄膜在不同浓度的CO气体下的敏感特性进行了研究,随着气体浓度的增加,薄膜电阻值逐渐减小;随着掺Al量的增大,气敏灵敏性先逐渐增大后减小,发现当铝含量为r(Al:ZnO)=0.5%时,对CO气体的灵敏度最大,并对紫外光照射下气敏半导体薄膜的气敏机理进行了简单分析。  相似文献   

4.
采用高温固溶工艺制备了Al3+,Fe3+和Ag+掺杂的T-ZnO气敏材料,并制作了烧结型厚膜气敏元件,测试了元件对H2S,NH3,C2H5OH和H2的敏感特性,研究了掺杂剂、掺杂工艺和材料形貌结构对T-ZnO材料气敏特性的影响规律。结果显示,T-ZnO材料对H2S和C2H5OH气体灵敏度较高,对H2和NH3等气体灵敏度较差;经过H2气氛热处理,掺物质的量百分数为0.1%Al3+的T-ZnO对气体表现出很高的灵敏度,在268.5℃时,对体积分数为10-4的H2S的灵敏度达160;同时,Al3+掺杂工艺改善了材料对H2S和C2H5OH的恢复-响应特性。在Fe3+掺杂ZnO样品中,出现第二相(ZnFe2O4)可以提高对气体的灵敏度。  相似文献   

5.
邱美艳  杜鹏  孙以材  潘国锋   《电子器件》2007,30(1):37-40,45
用直流磁控溅射法分别在Si(111)基片及陶瓷基片上制备掺有TiO2的ZnO薄膜,并进行500℃、700℃退火处理,对掺杂前后ZnO薄膜进行XRD分析,测试各掺杂样品气敏特性.500℃退火后,各掺杂样品对有机气体有较高的灵敏度,随着掺杂时间延长,气敏特性提高.700℃退火后,2 min掺杂的样品对乙醇有很高的灵敏度和很好的选择性,最佳工作温度为220℃左右.而其他掺杂量的样品对乙醇气体灵敏度低,随着掺杂时间延长,气敏特性降低.  相似文献   

6.
该文讨论了TiO2对氧气的吸附过程及敏感机理、重点分析了掺铁和掺钨对氧敏特性的影响,并比较了两者的异同.制作了掺铁和掺钨的TiO2薄膜,并在400℃下对薄膜氧敏特性进行了测试.结果表明.TiO2具有低电阻的特点,在高温下能够有效感应氧气浓度的变化.  相似文献   

7.
王兢  包化成  姚朋军  吴娜 《微纳电子技术》2007,44(7):332-334,338
用纳米SnO2制作了旁热式气敏元件。用掺杂方法提高SnO2甲醛气敏元件的灵敏度,掺杂剂包括Pd,Sb,Ti,Zr,Cu,Ag,Mn等。在SnO2气敏元件中分别掺杂质量分数2%Pd和2%Zr对提高元件灵敏度有显著效果。未掺杂SnO2、掺杂质量分数2%Pd和2%Zr的气敏元件对体积分数为5×10^-5甲醛的灵敏度分别为1.33,2.38,2.08,但是掺杂在改善元件对乙醇的选择性方面作用不大。分析了掺杂改善SnO2气敏元件灵敏度的原理,当SnO2表面吸附还原性气体时,吸附气体提供电子,使半导体表层的导电电子数增加,引起电导率增加、电阻下降。吸附气体浓度越高,电阻率变化越大,元件灵敏度越大。  相似文献   

8.
用纳米SnO2制作了旁热式气敏元件。用掺杂方法提高SnO2甲醛气敏元件的灵敏度,掺杂剂包括Pd,Sb,Ti,Zr,Cu,Ag,Mn等。在SnO2气敏元件中分别掺杂质量分数2%Pd和2%Zr对提高元件灵敏度有显著效果。未掺杂SnO2、掺杂质量分数2%Pd和2%Zr的气敏元件对体积分数为5×10-5甲醛的灵敏度分别为1.33,2.38,2.08,但是掺杂在改善元件对乙醇的选择性方面作用不大。分析了掺杂改善SnO2气敏元件灵敏度的原理,当SnO2表面吸附还原性气体时,吸附气体提供电子,使半导体表层的导电电子数增加,引起电导率增加、电阻下降。吸附气体浓度越高,电阻率变化越大,元件灵敏度越大。  相似文献   

9.
本文报道了一种SnO2气敏传感器敏感机理的新模型。SnO2晶粒表面势垒由3个过程控制:(1)氧吸附(作电子受主)和脱附,(2)还原性气体吸附(作电子施主)和脱附,(3)表面氧化还原反应。据此可以很好地解释实验中发现的氧分压对气敏传感器响应的影响。  相似文献   

10.
SnO_2∶ZnO薄膜光透射的气敏特性   总被引:2,自引:0,他引:2  
郭斯淦  郑顺旋  余永安 《中国激光》1991,18(12):905-908
作者研制成一种二氧化锡掺氧化锌的光学薄膜,该膜具有气敏特性。测量了它在甲醇蒸气、乙醇蒸气、氨气中光透射率与气体浓度的关系,并解释了它的机理。  相似文献   

11.
以SnCl2·2H2O、HF为原料,采用共沉淀法合成了掺氟二氧化锡FTO(SnO2∶F)纳米粉。在氧化的过程中进行掺杂,使F原子更容易取代O原子,在400℃低温下蒸发得到了低电阻率的FTO纳米粉。应用SEM、XRD、EDS和压片测电阻等方法,对所获粉体进行了表征。结果表明,F的掺杂明显降低了SnO2的电阻率。当r(Sn∶F)为10∶3时,FTO纳米粉的电阻率最低,为57.2Ω/cm。  相似文献   

12.
本文报道了一种SnO_2气敏传感器敏感机理的新模型。SnO_2晶粒表面势垒由3个过程控制:(1)氧吸附(作电子受主)和脱附,(2)还原性气体吸附(作电子施主)和脱附,(3)表面氧化还原反应。据此可以很好地解释实验中发现的氧分压对气敏传感器响应的影响。  相似文献   

13.
光学气敏材料吸附气体分子后导致光学性质发生变化,运用这一原理来检测环境中的气体成分,称为光学气敏效应。采用基于密度泛函理论(DFT)体系下的第一性原理平面波超软赝势方法,研究了光学气敏材料金红石相TiO2(110)表面吸附H2S分子的微观特性,计算了TiO2(110)表面吸附能、电荷密度、态密度和光学性质的变化。结果表明,TiO2最稳定的表面是终止于二配位O原子的(110)面,只有含有氧空位的表面才能稳定吸附H2S,且氧空位比例越高,越有助于H2S吸附于表面;表面吸附H2S以水平吸附方式为主,在氧空位比例达到33%时,吸附能为0.7985eV;吸附的实质是表面氧空位具有氧化性,氧化了H2S分子。在可见光400~760nm范围内,存在氧空位的TiO2(110)表面吸附H2S后都可改善表面的光学性质。氧空位缺陷浓度越高,改善材料对可见光的吸收和反射能力越强,光学气敏响应能力越佳。  相似文献   

14.
用直流磁控反应溅射法,分别在Si(111)基片及Al2O3陶瓷基片上制备了ZnO薄膜,并进行TiO2、SnO2、Al2O3或CuO的掺杂和退火处理。用XRD分析了退火前后晶型的变化,利用气敏测试系统对各样品进行了气敏特性测试。结果表明:经过700℃退火后的样品,在最佳工作温度为220℃时,对丙酮有很好的选择性和很高的灵敏度(34.794)。掺杂TiO2或SnO2,可提高ZnO薄膜传感器对丙酮的灵敏度(57.963)。  相似文献   

15.
付萍  林志东  张宏 《半导体技术》2011,36(3):182-186
采用溶胶-凝胶法制备了不同配比的TiO2-SnO2纳米复合材料,以其作为气敏材料制备成旁热式气敏元件,研究了气敏元件在紫外光照下的气敏特性。结果表明,复合材料平均晶粒尺寸为19 nm,SnO2晶型为金红石型,气敏元件的电导在紫外光照下增加,对醇类有机挥发性气体的气敏灵敏度也显著提高,气敏元件的电阻、灵敏度均随TiO2含量的增加而增大。工作温度160℃时对乙醇气体的灵敏度为18,240℃时灵敏度为52,是无光照时的1.6倍,响应时间为5 s,恢复时间为9 s。  相似文献   

16.
采用基于密度泛函理论的第一性原理平面波超软赝势方法计算了金红石TiO_2(110)纯净表面以及掺杂N、掺杂Rh和N/Rh共掺表面吸附CO分子后的光学气敏传感特性。研究发现:纯净和掺杂表面吸附CO分子后均表现出光学气敏传感特性,其原因是表面氧空位的氧化作用;而N/Rh共掺杂对表面氧化性改善得最多,吸附CO分子后吸附距离最小,吸附能最大,稳定性最好,且易于实现。因此,相比于纯净及单掺杂体系,N/Rh共掺杂表面对气体有更好的光学气敏传感效应,是一种改进TiO_2光学气敏传感材料的良好方式。  相似文献   

17.
气敏元件,有人称之为“电子鼻”,实际上它是一种气敏电阻器,其阻值随被检测气体的浓度(成分)而变化。气敏元件是一种“气一电”传感器件,它能将被测气体的浓度(成分)信号,转变成相应的电信号。气敏元件有N型和P型之分。N型在检测可燃气体的浓度时,其阻值随气体浓度的增大而减小;而P型元件的阻值随气体浓度的增大而增大。气敏元件主要是采用二氧化锡(SnO_2)等金属氧化物半导体制成。取材和掺杂决  相似文献   

18.
掺铝二氧化锡气敏材料的制备与性能研究   总被引:1,自引:0,他引:1  
用sol-gel法制备了8种掺铝SnO2气敏材料,并用XRD分析其结构和晶粒度,用自组装仪器测定其气敏性能。结果表明:铝的掺入未改变SnO2的四方晶系结构,样品晶粒度为31.46~50.89nm;烧结温度600℃、掺铝量为5%(摩尔分数)的样品对C4H10的灵敏度为22.7;烧结温度600℃、掺x(Al)为1%的样品对H2S比较敏感,灵敏度为87.5;烧结温度700℃、掺x(Al)为5%的样品对C4H10灵敏度为45.5,对H2S灵敏度为100。  相似文献   

19.
本文报道了一种SnO2气敏传感器感机理的新模型。SnO2晶粒表面势垒由3个过程控制:(1)氧吸附(作电子受主)和脱附,(2)还原性气体附(作电子施主)和脱附,(3)表面氧化还原反应。据此可以很好地解释实验中发现的氧化压对气敏传感器响应的影响。  相似文献   

20.
《微纳电子技术》2019,(12):978-983
采用水热法,通过调控反应温度得到了具有不同微观形貌的ZnO纳微分级结构。扫描电子显微镜(SEM)结果表明,纳微分级结构分别由纳米棒或纳米片按不同方式堆积而成。X射线衍射(XRD)结果表明,所制备的ZnO纳微分级结构均为纤锌矿结构。此外,通过BET比表面积测试与气敏性能测试发现,微观形貌不同的分级结构具有不同的比表面积、孔隙率和平均孔径,同时气敏性能也有差异。在反应温度为65、100和150℃下制备了样品S_1、S_2和S_3。相比另外两组样品,纳米片堆积而成的样品S_2具有更大的比表面积(4.87 m~2/g)、更高孔隙率(0.092 6 cm~3/g)和更大平均孔径(76 nm),其最佳测试温度为300℃,在三个样品中最低(S_1的最佳检测温度为370℃,S_3的最佳检测温度为394℃)。同时在最佳检测温度下S_2对气体响应值最高(110),响应时间最短(7.10 s)。由此说明,高比表面积和孔隙率有利于气体的扩散,从而能够提高材料的气敏性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号