首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plunger-type, completely hand-operated applicator prototype, made of polyvinyl chloride (PVC), for deep placement of urea briquettes (UB), i.e., pillow-shaped urea supergranules with edges, in line transplanted rice has been developed for use by small-scale rice farmers. The field evaluation of the applicator was conducted in the Philippines during the 1989 dry season. The applicator consistently placed UB at proper depth (7 to 8 cm), which resulted in low concentrations of urea N (<7 ppm) in about 4 cm of floodwater 1 day after placement. These findings indicated that the prototype worked properly. Average work output of the applicator was 0.20 ha workday–1 and may increase with practice. The yields of irrigated transplanted rice in the field trials show that agronomic efficiencies of hand-placed UB and applicator-placed UB were equal and were superior to those of split-applied prilled urea.  相似文献   

2.
Field trials were conducted in the Philippines and India during 1989 and 1990 seasons to study comparative yield responses of transplanted rice (Oryza sativa L.) to pillow-shaped urea briquettes (UB) deep placed by an applicator (prototype developed by IFDC) and by hand immediately after transplanting. The applicator-placed UB consistently increased grain yields over the split-applied prilled urea, and the additional yields ranged from 0.23 to 1.48t ha–1 (5 to 83%) for 25 to 63 kg N ha–1. Agronomic responses of transplanted rice to the UB placed by the applicator and by hand were statistically equal. Modified rice hill spacing may be considered as a requirement for efficient use of the applicator. The results demonstrate that with the UB applicator it is possible to deep place UB mechanically and achieve the agronomic efficiency that is achieved by hand deep placement of the UB.  相似文献   

3.
Microplot experiments were conducted at two locations (Lacombe and Eckville) in central Alberta to evaluate methods of application of urea (60 kg N ha–1) on established meadow bromegrass (Bromus biebersteinii L. cv Regar). Urea was surface broadcast and banded 4 cm deep into soil at four row-spacings (15, 22.5, 30 and 37.5 cm). The dry matter and crude protein yield were generally greatest in plots when urea was banded at 15 cm spacing. There was a general decrease in dry matter yield, particularly with the first cut at the Lacombe site when urea was banded at more than 15 cm spacing. The dry matter yield, crude protein yield and crude protein concentration were significantly greater in grass adjacent to the banded fertilizer than in grass from the area midway between the bands at the Lacombe site.  相似文献   

4.
Field experiments were conducted in north-central and central Alberta to determine the effect of pellet size and depth of placement on yield and N uptake of barley from fall- and spring-applied urea. The application rate was 56 kg N ha–1. Fall incorporated commercial urea (0.01 g) gave 792 kg ha–1 lower yield and 15 kg ha–1 less N uptake than similarly applied commercial urea in spring on the average for the five experiments. The effectiveness of fall-applied N tended to be greater with large urea pellets (2.5 g), especially when they were placed 15 cm deep. Specifically, the relative yield efficiency of fallversus spring-applied N was 77% when the larger pellets were placed 4 cm deep and 95% when placed 15 cm deep. However, large pellets were less effective than commercial urea when both were applied in spring at sowing or two weeks before.  相似文献   

5.
Laboratory and greenhouse experiments were conducted to determine whether the efficiency of broadcast urea in wetland rice cultivation can be improved by using large granules which penetrate the puddled soil. In laboratory experiments the penetration increased with increasing granule size. Penetration was improved by having only a waterfilm on the soil and by the granules entering the soil with speed.In pot experiments with rice, N concentrations in the floodwater were lower with large granular urea (LGU, 6 to 8 mm diameter) dropped from a height of 2 m or shot with force into the puddled soil than with either prilled urea (PU) or LGU placed on top of the soil (+0cm). N concentrations in the floodwater were reduced even further by placement of LGU at 1 and 4 cm depths (–1 and –4cm, respectively). At all rates of N, the N uptake by grain plus straw increased with decreasing N concentrations in the floodwater. The apparent recovery of N in grain plus straw increased in an experiment on sandy soil from 61 to 85% in the order PU +0cm, LGU +0cm, LGU dropped, LGU –1cm, LGU shot and LGU –4cm. In an experiment on clay soil apparent recovery increased from 47 to 90% in the order PU +0cm, LGU +0cm, LGU dropped, LGU –0cm, LGU shot, LGU –1cm and LGU –4cm. LGU placed at –1 and –4cm resulted in significantly greater N uptake by grain plus straw than the other treatments.The experiments showed that the efficiency of broadcast urea is improved by using large urea granules, at least when conditions are favourable for penetration into the puddled soil.  相似文献   

6.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

7.
Fall application of N fertilizers is often inferior to spring application for increasing yields of spring-sown cereal grains. The objective of this study was to determine the influence of date of application on efficiency of fall-applied N. Fall application dates were related to recovery of fall-applied N as mineral N in soil in spring, and related to yield and N uptake for spring-sown barley. Urea at a rate of 50 or 56 kg N ha–1 was incorporated into the soil to a depth of 10 cm. There were 2 or 3 application dates in the fall and one in the spring at sowing. Linear regression indicated recovery of fall-applied N as soil mineral N in spring increased from 30% with urea added on 19 September to 79% with addition on 6 November, but the predictability was low (r = 0.54**). Increase in grain yield, expressed as relative efficiency of fall- versus spring-applied N, was only 23% on 19 September but rose to 76% by 6 November (r = 0.68**). Results were similar for N uptake in grain. Other approaches to predicting the relative efficiency of fall- versus spring-applied N for yield increase were based on fall soil temperature at 5 cm depth, instead of fall calendar date. Soil temperature on the day of N application gave inferior correlation (r = –0.55**), but the use of number of days from application to first day of 0°C soil temperature gave a fairly close correlation (r = –0.77**). Soil degree-days accumulated from application to first day of 0°C soil temperature gave a similarly close correlation (r = –0.78**). In all, the efficiency of fall-applied urea was markedly increased by delaying the application into the late fall; and calendar date, number of days or soil degree-days from application to soil freezing all predicted the efficiency fairly well.(Contribution No. 599)  相似文献   

8.
A laboratory incubation experiment was conducted to gain a better understanding of N transformations which occur near large urea granules in soil and the effects of dicyandiamide (DCD), nitrifier activity and liming. Soil cores containing a layer of urea were used to provide a one-dimensional approach and to facilitate sampling. A uniform layer of 2 g urea or urea + DCD was placed in the centre of a 20 cm-long soil core within PVC tubing. DCD was mixed with urea powder at 50 mg kg–1 urea and enrichment of soil with nitrifiers was accomplished by preincubating Conestogo silt loam with 50 mg NH 4 + -N kg–1 soil. Brookston clay (pH 5.7) was limited with CaCO3 to increase the pH to 7.3. The cores were incubated at 15°C and, after periods of 10, 20, 35 and 45 days, were separated into 1-cm sections. The distribution of N species was similar on each side of the urea layer at each sampling. The pH and NH 4 + (NH3) concentration were very high near the urea layer but decreased sharply with distance from it. DCD did not influence urea hydrolysis significantly. Liming of Brookston clay increased urea hydrolysis. The rate of urea hydrolysis was greater in Conestogo silt loam than limed Brookston clay. Nitrite accumulate was relatively small with all the treatments and occurred near the urea layer (0–4 cm) where pH and NH 4 + (NH3) concentration were high. The nitrification occurred in the zone where NH 4 + (NH3) concentration was below 1000µgN g–1 and soil pH was below 8.0 and 8.7 in Brookston and Conestogo soils, respectively. DCD reduced the nitrifier activity (NA) in soil thereby markedly inhibiting nitrification of NH 4 + . Nitrification was increased significantly with liming of the Brookston soil or nitrifier enrichment of the Conestogo soil. There was a significant increase in NA during the nitrification of urea-N. The (NO 2 + NO 3 )-N concentration peaks coincided with the NA peaks in the soil cores.A practical implication of this work is that large urea granules will not necessarily result in NO 2 phytotoxicity when applied near plants. A placement depth of about 5 cm below the soil surface may preclude NH3 loss from large urea granules. DCD is a potential nitrification inhibitor for use with large urea granules or small urea granules placed in nests.  相似文献   

9.
The movement and transformations of ammonium-, urea- and nitrate-N in the wetted volume of soil below the trickle emitter was studied in a field experiment following the fertigation of N as ammonium sulphate, urea and calcium nitrate. Effects on soil pH in the wetted volume were also investigated.During a fertigation cycle (emitter rate 2lh–1) applied ammonium was concentrated in the surface 10 cm of soil immediately below the emitter and little lateral movement occurred. In contrast, because of their greater mobility in the soil, fertigated urea and nitrate were more evenly distributed down the soil profile below the emitter and had moved laterally in the profile to 15 cm radius from the emitter. The conversion of applied N to nitrate-N was more rapid when urea rather than ammonium-N was applied suggesting that the accumulation of large amounts of ammonium below the emitter in the ammonium sulphate treatment probably retarded nitrification.Following their conversion to nitrate-N, both fertigated ammonium sulphate and urea caused acidification in the wetted soil volume. Acidification was confined to the surface 20 cm of soil in the ammonium sulphate treatment, however because of its greater mobility, fertigation with urea (2lh–1) resulted in acidification occurring down to a depth of 40 cm. Such subsoil acidity is likely to be very difficult to ameliorate. Increasing the trickle discharge rate from 2lh–1 to 4lh–1 reduced the downward movement of urea and encouraged its lateral spread in the surface soil. As a consequence, acidification was confined to the surface (0–20 cm) soil.  相似文献   

10.
Relative ammonia volatilization loss from prilled urea, urea supergranule (USG), neem cake-coated urea (NCU), rock phosphate-coated urea (RPCU), gypsum-coated urea (GCU), and prilled urea supplemented with dhaincha (Sesbania aculeata) green manure (Dh + PU) was measured in the fields under different hydrological situations of rice growing. Ammoniacal-N and pH of flood water were less with point placement of USG and Dh + PU treatments than with single basal broadcast applications of urea-based fertilizers. Ammonia collected with an acid trap in an enclosed chamber ranged from 1.47–3.07, 0.24–3.74, 0.80–3.50 and 0.50–1.20% of the applied N in upland, alternate wetting and drying, shallow submergence and intermediate deep water situations, respectively. The collected ammonia was less with point placement of USG at 5 cm depth in all situations and with Dh + PU treatment in shallow submergence than with other sources of N. Single basal broadcast applications of RPCU or NCU resulted in relatively higher loss. The loss from top-dressed urea was less than that from basally applied urea because of larger crop canopy at later stages of crop growth.  相似文献   

11.
TheAzolla pinnata (Vietnam) inoculated in rice field 10 days after transplanting (DAT) at a rate of 500 kg ha–1 fresh biomass along with phosphorus fertilizer application produced a mat on the water surface at 30 DAT. The three split application of phosphorus as 4.4, 2.2 and 2.2 kg P ha–1 applied at 10, 15 and 20 DAT, respectively produced 67% more biomass and 57% more Nitrogen inAzolla than those obtained by applying 8.8 kg P ha–1 at 10 DAT. Whereas, the two splits of phosphorus as 6.6 and 2.2 kg and 4.4 and 4.4 kg P ha–1 applied 10 and 15 DAT, respectively produced 20 and 33% more biomass and 14 and 27% more Nitrogen only.The three split application of phosphorus also increased the grain and straw yields, panicle number and weight, nitrogen concentration and its uptake in rice significantly over application of the entire amount once only. An increase of 10% grain yield and 13% straw yields was observed when 8.8 kg P ha–1 was applied in three splits rather than applied at one time. On the average an increase of 24% grain and 23% straw yields in rice were observed due toAzolla intercropping and 22% and 16%, respectively due to phosphorus application. The intercropping ofAzolla with rice along with phosphorus application also increased the fertility level of soil by increasing the total nitrogen, organic carbon and available phosphorus of soil.  相似文献   

12.
Changes in soil pH, exchangeable aluminium (Al), calcium (Ca), magnesium (Mg), and potassium (K) and extractable manganese (Mn) were investigated after urea fertigation of a sandy loam soil in an apple orchard in New Zealand. Urea at three rates (0, 25, 50 kg N ha–1 yr–1 or 0, 16.9, 33.8 g N emitter–1 yr–1) was applied in 4 equal fertigations. Soil cores at 4 profile depths (0–10, 10–20, 20–40 and 40–60 cm) directly below and 20 cm from the emitter were sampled approximately 4 weeks after each fertigation and in the following winter. Results obtained showed that the largest changes in soil pH and cations occurred in soils directly below the emitter in the 50 kg N ha–1 yr–1 treatment where the soil pH decreased by 1.6 pH units at all soil depths. The lowest pH of 4.3 was observed at a depth of 27 cm. Exchangeable Al and extractable Mn levels increased to 11 meq kg–1 and 78µg g–1 respectively. Estimated losses of Ca, Mg and K from the upper soil profile depth (0–10 cm) represented 23, 63 and 27% of their respective total exchangeable levels. At lower profile depths (>20 cm), accumulation of displaced K was evident. Variable, and generally non-significant, chemical changes recorded in soils 20 cm from the emitter were attributed to restricted lateral water movement, and therefore urea movement, down the profile.The present study showed that one season of urea fertigation by trickle emitters, applied to a sandy loam, at half the rate conventionally applied to apple orchards (50 kg N ha–1 yr–1) resulted in pH and mineral element imbalances which were potentially and sufficiently severe to inhibit tree growth.  相似文献   

13.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

14.
Ammonia volatilization loss from mineral N fertilizers was determined on a calcareous Chinese loess soil with a pH (CaCl2) of 7.7. An original in situ method that required no electricity or laboratory analyses was used. By means of a bellows pump, ambient air was drawn through four conical cups placed onto the soil (total area 400 cm2) and subsequently through an NH3-specific detector tube with direct colorimetric indication of the ammonia concentration (measuring range, 0.05–700 vol.-ppm NH3). Duration of measurement was about 3 min. Following N fertilization to winter wheat in 1990 and to summer maize in 1991, the application methods surface broadcast, uniform incorporation into the 0–15-cm layer, and for maize, a point placement at 10 cm depth were investigated. Ammonium bicarbonate and urea were applied at rates of 100 and 200 kg N ha–1. In the autumn of 1990, ammonia losses following NH4HCO3 application were more than twice as large as with urea, fertilizer incorporation reduced NH3 losses 15-fold, and doubling the nitrogen application rate resulted in a 1.7-fold increase in the percentage of nitrogen loss. Cumulative ammonia fluxes were about 2 times higher in the summer of 1991. Comparing application methods in summer, losses were significantly (3 times) lower only with point placement. The above differences were all significant at the P<0.05 level. Due to the very low air exchange rate (0.9 volumes min–1), actual volatilization rates were underestimated by this method. Though not yielding absolute amounts, the Dräger-Tube method proved very suitable for comparing relative differences in ammonia fluxes. The measurements clearly reflected the characteristic flux patterns for the different treatments and the effects of environmental factors on their time course.  相似文献   

15.
An objective of the International Network on Soil Fertility and Fertilizer Evaluation for Rice (INSFFER) network is to field evaluate deep-point placement (urea supergranules) and slow-release (sulfur coated urea) N fertilizers in irrigated rice. These N sources were compared for performance with split application of prilled urea at 19 sites in Asia in wet season 1981.SCU or USG differed significantly in response curves from prilled urea at 12 of the 17 sites where N response was observed. Over these 17 sites, 22–25% less N as SCU or 29–31% less N as USG provided the same yield increment as the comparatively higher level of N as prilled urea.High profit N rates were derived for 5 sites. The optimal N levels for SCU or USG were less than for prilled urea. However, in one case for both test materials prilled urea was more profitable than SCU or USG. The marginal rates of return of using SCU or USG as opposed to OPU were calculated for the 11 sites where the response functions of the test materials differed significantly from prilled urea. In other than 2 sites for SCU the MRR exceeded 2.0 for 29 and 58 kg N ha–1, indicating the general profitability of these materials when compared to prilled urea.  相似文献   

16.
Green manuring of rice with dhaincha (Sesbania aculeata) is widely practised under irrigated puddle-transplanted conditions. In flood-prone lowlands, the rice is established through direct seeding early in the season and flooding occurs after 1–2 months of crop growth following regular rains. The low yields are due to poor crop stands and difficulty in nitrogen management under higher depths of water. The effect of green manuring with dhaincha intercropped with direct-seeded rice vis-à-vis the conventional practice of incorporating pure dhaincha before transplanting was investigated under flood-prone lowland conditions (up to 50–80 cm water depth) at Cuttack, India. Treatment variables studied in different years (1992, 1994 and 1995) were: rice varieties of different plant heights, crop establishment through direct seeding and transplanting, varying length of periods before dhaincha incorporation, and urea N fertilizer levels. Dhaincha accumulated 80–86 kg N ha-1 in pure stand and 58–79 kg N ha-1 when intercropped with direct-seeded rice in alternate rows at 50 days of growth. The growth of rice improved after dhaincha was uprooted manually and buried in situ between the rice rows when water depth was 10–20 cm in the field. The panicle number was lower but the panicle weight was higher with dhaincha green manuring than with recommended level of 40 kg N ha-1 applied as urea. The grain yield was significantly higher with direct seeding than with transplanting due to high water levels (>60 cm) immediately after transplanting. Dhaincha manuring was at par with 40 kg N ha-1 as urea in increasing the yield of direct-seeded and transplanted crops. The highest yield of direct-seeded crop was obtained when 20 kg N ha-1 was applied at sowing and dhaincha was incorporated at 50 days of growth. The results indicate that green manuring of direct-seeded rice with intercropped dhaincha is beneficial for substituting urea fertilizer up to 40 kg N ha-1 and augmenting crop productivity under flood-prone lowland conditions.  相似文献   

17.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   

18.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

19.
Incorporation of urea into puddled rice soils is known to reduce ammoniacal-N buildup in floodwater and the subsequent loss of N as ammonia. Little is known, however, about seasonal and temperature effects on the effectiveness of basal urea incorporation in puddled soils. A field experiment was conducted in northern Vietnam on an Aquic Ustifluvent in the spring season (February to June) and summer season (July to November) to determine the effect of the presence of floodwater and method of fertilizer incorporation on floodwater ammoniacal-N, floodwater urea-N, andpNH3 following urea application. During the 4 d following basal urea application, floodwater temperature at 1400 h was 7 to 15°C higher in summer (July) than that in spring (February), and floodwater pH at 1400 h was 0.5 to 1.0 higher in summer than that in spring. ThepNH3 was much higher in summer than that in spring, suggesting a high potential for ammonia volatilization in summer. The movement of transplanters through the field did not reducepNH3, irrespective of floodwater depth (0 or 5 cm) and season. Harrowing and subsequent transplanter movement partially reducedpNH3 in the summer;pNH3 reduction, however, was greater when floodwater depth was 0 rather than 5 cm during harrowing and transplanting. This partial reduction ofpNH3 in summer did not result in a corresponding increase in rice yield, presumably because N losses were only slightly reduced and because yield was constrained by additional factors, such as the adverse climate. In spring, the removal of floodwater before urea application and incorporation increased grain yield by 0.2 Mg ha–1, even thoughpNH3 was consistently low and was not reduced by urea incorporation. This result suggests that water management and tillage during basal urea application may influence rice growth and yield in ways other than reduced N loss.  相似文献   

20.
To increase the fertilizer-N efficiency in lowland rice (Oryza sativa L.) cultivation, new management practices are needed. Main cause of the present low efficiency is the low N recovery by plants, as a considerable part of the N applied is lost; deep placement techniques improve the recovery. A pneumatic injector, with which urea prills can be point-placed at a depth of 5–10 cm in paddy soils, was tested in 38 on-farm trials in 1989/90, mostly during the wet season. The experiments, located in Africa and Asia, focussed on differences in grain yield between conventional methods of broadcasting urea and injection by the pneumatic injector, at recommended N-rates. The study shows that the pneumatic injector is effective as a tool to improve the N fertilizer efficiency. The average yield increases per region, resulting from the use of the injector, ranged from about 250 to 1300 kg grain ha–1. The value of the yield increase would allow most farmers to recover the costs of the injector within one season, even if labour was hired to carry out the injections. The average labour requirement of the injector was 40 hours ha–1. In Indonesia, injection of prilled urea gave yields similar to those obtained with urea briquettes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号