首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
微波消解-火焰原子吸收光谱法测定磷矿石中铅   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微波消解技术对磷矿石样品进行预处理,确定了溶样酸介质及其用量、微波消解压力、时间等关键因素,建立了火焰原子吸收光谱法测定磷矿石中铅的方法。实验结果表明,在盐酸、硝酸、硫酸、王水等四种溶样介质中,以王水的溶样效果最好,其适宜用量为每克样品5 mL。采用3步的微波消解程序,消解压力/消解时间依次为:0.3 MPa/60 s,0.5 MPa/360s,1.0 MPa/180 s。与传统酸溶法相比,微波消解的溶样时间短,试样溶解完全。方法的检出限为0.036μg/mL。对磷矿石样品进行分析,相对标准偏差(RSD)在4.1%~6.6%之间,加标回收率为94%~108%。  相似文献   

2.
不锈钢样品经王水溶解后,用火焰原子吸收光谱法测定了样品中铅的含量,建立了测定复杂体系中痕量铅的简便方法。对仪器参数进行了优化;考察了样品中的干扰。结果表明,采用氘灯背景校正和标准加入法消除样品测试过程中的背景干扰和非光谱干扰后,方法线性范围为0.035~9 μg/mL,检出限为0.035 μg/mL。将本方法应用于不锈钢光谱分析标准物质GBW 01664中铅的测定,测得结果与认定值一致,相对标准偏差(n=7)为0.97%。将本方法用于实际样品分析,结果的相对标准偏差(n=7)为0.57%~0.62%,加标回收率为96%~102%。  相似文献   

3.
使用微波消解仪,在密闭升温增压条件下,以王水浸提重晶石中铅和镉,用火焰原子吸收光谱法测定铅,石墨炉原子吸收光谱法测定镉。浸取率比用同样酸的常压敞开浸提法高,样品空白值低;处理样品的速度比用高压坩埚酸浸提法快;试样中的铅和镉损失比碳酸钠融熔处理法少。方法检出限:铅为0.069μg/mL,镉为0.087μg/mL。样品中铅、镉的加标回收率分别为95.1%~99.5%,97.1%~104.4%;相对标准偏差分别为1.3%~3.2%,1.6%~2.8%。  相似文献   

4.
研究了微波马弗炉加热处理样品,火焰原子吸收光谱法测定废旧电路板中金、银、铂、钯的方法。称取5.0 g粉碎后废旧电路板样品,用微波马弗炉在550 ℃灼烧30 min分解有机物,用王水溶解样品,样品溶液中的金、银、铂、钯用火焰原子吸收光谱法进行测定。金、银、铂、钯的方法检出限分别为0.078、0.12、0.15和0.15 mg/mL;方法回收率在90%~108%之间;用本方法平行测定同一废旧电路板样品7次,日内相对标准偏差为2.2%~2.9%;日间相对标准偏差为3.3%~3.5%。将本方法用于废旧电路板分析,测得结果与微波消解-电感耦合等离子体发射光谱法一致。  相似文献   

5.
烧结机头电除尘灰的交易日益活跃,而贵金属银含量为其定价的主要指标,故研究对其中银的测定方法具有重要意义。于700℃马弗炉中对试样进行灰化预处理后,再以电热板加热的方式用15mL王水-8mL氢氟酸-5mL高氯酸对其消解,或以微波的方式用6mL王水-3mL氢氟酸-2mL高氯酸对其进行消解,继而以20%~25%(体积分数)王水作为介质,用火焰原子吸收光谱法对消解液进行测定,据此,分别建立了电热板加热消解-火焰原子吸收光谱(FAAS)法与微波消解-火焰原子吸收光谱法两种测定烧结机头电除尘灰中银的方法。共存元素干扰试验表明:样品中除铁和钙外其他元素不干扰测定,通过向校准曲线用银标准溶液系列中加入5 500μg/mL铁、571.76μg/mL钙(相当于800μg/mL氧化钙)的方法可消除铁和钙对测定的干扰。分别采用实验建立的两种方法,对烧结机头电除尘灰实际样品中银进行测定,结果表明,两种方法的测定结果均与电感耦合等离子体原子发射光谱(ICP-AES)法相符,相对标准偏差(RSD,n=11)分别为1.4%~2.2%和2.0%~2.6%,回收率均在95%~104%范围内。  相似文献   

6.
样品用盐酸、过氧化氢溶解,在少量硫酸存在下,以盐酸和氢溴酸挥锡,电感耦合等离子体原子发射光谱法测定铅和镉的含量。优化了仪器的工作参数,对溶样酸和锡基体等影响因素进行了试验。本法测铅和镉的线性范围分别为0.50~5.00 μg/mL和0.050~0.50 μg/mL ,检出限分别为13.2 μg/L和0.9 μg/L,样品测定结果的相对标准偏差(n=6)均小于4 %,用标准加入法测得回收率分别为97 %~108 %和90 %~96 %。  相似文献   

7.
银侧吹炉烟灰样品结构较为复杂,硝酸-酒石酸溶解样品-EDTA滴定测定其中的铋时,样品消解不完全,终点不稳定,测定结果偏低。为了准确测定银侧吹炉烟灰中的铋,试验建立了硝酸-盐酸-氢氟酸-高氯酸消解银侧吹炉烟灰,选择Bi190.234 nm为分析线,使用电感耦合等离子体发射光谱法(ICP-AES)测定银侧吹炉烟灰的铋的方法。试验讨论了溶样方法的选择,介质及加入量的选择,共存元素干扰情况对铋测定结果的影响。结果表明:采用硝酸-盐酸-氢氟酸-高氯酸消解样品能使样品消解完全,加入25mL王水后进行测定结果稳定,共存元素对铋测定结果无影响。铋在0~15μg/mL的校正曲线关系良好,相关系数为0.999998,方法检出限为0.017μg/mL。取不同银侧吹炉烟灰样品进行精密度考察,铋测定结果的相对标准偏差(RSD,n=12)在0.19%~0.58%之间,加标回收率在99.49%~100.25%之间。  相似文献   

8.
微波消解-分光光度法测定钨矿中钨   总被引:2,自引:0,他引:2       下载免费PDF全文
冯忠伟 《冶金分析》2009,29(10):73-75
研究了利用微波消解技术对钨矿石样品进行消解,并采用硫氰酸盐分光光度法测定钨矿石中钨的含量。微波消解溶剂为40 mL NaOH溶液(25 g/L),微波火力为中高火,微波消解时间30 min。对各试剂用量进行了探讨,方法检出限为0.5μg/mL。对钨矿石样品进行分析,测定结果与传统溶样方法的结果相吻合,相对标准偏差小于2.3%。  相似文献   

9.
[目的]建立一种简便、快速测定豆腐花中铅含量的方法.[方法]采用微波消解法处理豆腐花样品,石墨炉原子吸收光谱法测定豆腐花中铅含量,并通过正交试验设计方法对微波消解参数进行了优化.[结果]测定铅的标准曲线相关系数为0.9994,相时标准偏差在0.32%~2.17%,加标回收率在95%~104%,检出限为1.454μg/L.[结论]用微波消解作为预处理手段,以石墨炉原子吸收分光光度法测豆腐花中铅的含量是一种可行的方法,具有精密度高、准确度好等优点.  相似文献   

10.
原子吸收光谱法连续测定金精矿中的银铜铅锌   总被引:1,自引:0,他引:1  
孔令强  李伟彦  邵国强 《黄金》2016,(11):73-75
针对金精矿日常化验中银、铜、铅、锌需分别溶样测定,浪费人力、时间,采用火焰原子吸收法一次溶样连续测定样品中的银、铜、铅、锌。金精矿采用盐酸-硝酸-氢氟酸-高氯酸混酸完全消解,盐酸(1+9)溶液定容,原子吸收光谱法进行测定。该方法加入标准物质回收率为96.9%~107.7%,相对标准偏差RSD(n=7)为1.17%~7.07%,检出限分别为Cu 0.001 5μg/m L、Pb 0.029 9μg/m L、Zn 0.011 2μg/m L、Ag 0.001 9μg/m L。该方法对金精矿中银、铜、铅、锌的测定结果与国家标准方法测定值相符。  相似文献   

11.
采用铅火试金法富集铜精矿中的贵金属、微波消解溶解得到贵金属合粒,并利用电感耦合等离子体质谱法(ICP-MS)对得到的溶液进行检测。在火试金条件的选择中,分别对熔融时间、灰吹温度和灰吹时间进行了讨论,确定了这三个参数的最佳值分别为15 min、960 ℃和1 h。在微波消解条件的选择中,对溶剂和用量进行了讨论,确定了10 mL王水溶解贵金属合粒效果最佳。此外,还分别就同量异位素、多原子离子、难熔氧化物与双电荷离子产生的干扰及消除进行了讨论。测定了三种铜精矿样品中金、钯、铂元素的含量,检出限分别为0.04、0.05、0.1 ng/g,相对标准偏差为1.2%~4.0%。  相似文献   

12.
选取5 mL王水为溶剂,采用微波消解法处理锌精矿样品,以205Tl作为测定同位素,建立了电感耦合等离子体质谱法(ICP-MS)测定锌精矿中痕量Tl的定量分析方法。优化后的微波消解程序如下:消解温度为190 ℃,升温时间为20 min,消解保持时间为20 min。采用直接稀释法消除基体效应,控制测试液中固体质量浓度不大于0.5 mg/mL。实验表明,Tl质量浓度在0.10~50.00 μg/L范围内与其对应的峰强度呈良好的线性关系,校准曲线相关系数为0.999 9。方法检出限为0.001 8 μg/L,方法测定下限为0.006 μg/L。对锌精矿实际样品中的痕量Tl进行分析,测定结果与国家标准方法中泡塑富集-电感耦合等离子体原子发射光谱法(ICP-AES)测定值基本一致,相对标准偏差(RSD,n=11)均小于5%。  相似文献   

13.
以王水为消解体系,采用3步程序升温微波消解法处理样品,选择8%(体积分数)王水为测定介质,实现了火焰原子吸收光谱法(FAAS)对铜精矿样品中1.6~600.0g/t银的测定。干扰试验表明,样品中的铜和铁对银测定的干扰可忽略。在选定的实验条件下,以银质量浓度为横坐标,测得的吸光度为纵坐标绘制校准曲线,其线性相关系数为0.9998。方法检出限为1.6g/t。采用实验方法对3个铜精矿标准物质分别测定11次,测定值与认定值一致,相对标准偏差(RSD)为0.23%~0.66%。选取5组不同银含量的铜精矿样品,按照实验方法测定,并根据测得银含量的不同范围,分别与国标方法GB/T 3884.2—2012中的酸溶-FAAS和火试金-滴定法测得结果进行对比,结果表明,二者基本吻合。  相似文献   

14.
以乙酸丁酯为萃取剂,建立了火焰原子吸收光谱法测定矿石中痕量金的方法,讨论了矿石的灼烧温度,萃取溶液中溴化钾加入量和王水的浓度等因素的影响。结果表明,其适宜条件为控制灼烧温度为700 ℃,萃取溶液中溴化钾溶液(100 g/L)加入量为3.0 mL和王水浓度为20 %(V/V)。方法检出限为0.03 μg/mL。本法用于矿石中金的测定,相对标准偏差≤6.5%,回收率在99 %~101 %之间。  相似文献   

15.
邵坤  范建雄  李刚  赵改红 《冶金分析》2021,41(10):49-56
采用铅试金法富集高镍锍中金、铂和钯时,因高镍锍中镍、铜含量较高,严重影响着铅试金的熔炼富集和灰吹效果。实验采用盐酸溶解分离高镍锍中镍、铜等基体组分,得到的含贵金属残渣经包铅灰吹法进一步富集与分离,最终实现了铅试金-电感耦合等离子体原子发射光谱法(ICP-AES)对高镍锍中金、铂和钯的准确测定。实验探讨了盐酸用量、铅箔用量、灰皿类型、灰吹损失、银加入量、分析谱线等因素对测定结果的影响。结果表明,对于5 g高镍锍样品,80 mL盐酸几乎可以将镍、铜等基体组分溶解完全;残渣经0.45 μm滤膜收集后,加入5 mg银并包于6.0 g铅箔中,在950 ℃的镁砂灰皿中灰吹,铅及少量贱金属硫化物被氧化分离而金、铂和钯几乎不损失,形成的银合粒经混合酸分解后,银以氯化银沉淀的形式分离不干扰测定;在王水(1+9)介质中,于分析线Au 267.595 nm、Pt 265.945 nm、Pd 340.458 nm处,采用ICP-AES测定金、铂和钯。各元素校准曲线的相关系数均在0.999以上;方法检出限为0.067 μg/g(Au)、0.085 μg/g(Pt)、0.107 μg/g(Pd)。方法用于测定高镍锍中金、铂和钯,结果的相对标准偏差(RSD,n=7)为2.8%~5.9%。测定结果与行业标准方法(YS/T 252.8—2020)对照测定结果基本吻合。  相似文献   

16.
铁粉是提取Au的重要原料,故需准确测定铁粉中的Au。采用自制并提纯的碱式碳酸铅作为捕集剂熔融得到铅扣,经加银保护灰吹铅扣将Au进一步富集在银合粒中,压制银合粒成片,采用先加入HNO3加热溶解,再加入HCl加热溶解的方式溶解银片,使Au完全溶解进入溶液,选择像素点为5,采用高分辨率连续光源火焰原子吸收光谱法(HR-CS-FAAS)进行分析,实现了对铁粉样品中Au的测定。实验比较了王水加热溶解-聚氨酯泡沫塑料富集分离和加Ag保护灰吹铅试金法两种样品处理方法。结果表明,采用王水加热溶解样品不能将样品溶解完全,且Au的测定结果相比加Ag保护灰吹铅试金法显著偏低,而采用铅试金法处理样品,样品熔融状态较好、熔渣流动性好,可使Au完全富集在铅扣中。对银合粒的溶解方法进行了试验,结果表明,采用加HNO3加热溶解后再加HCl的分步加热溶解方式可将银合粒溶解完全。共存离子干扰试验表明,样品中的共存离子不干扰测定。在选定的优化实验条件下,Au的吸光度与其对应的质量浓度运用二次方程最小二乘法拟合校准曲线,校准曲线决定系数为0.999 9;方法检出限为0.005 25 μg/g,定量限为0.017 32 μg/g。将所建立的方法应用于实际铁粉样品中0.56~12.6 μg/g Au的测定,结果的相对标准偏差(n=6)为2.3%~3.7%,加标回收率为92%~107%,满足国家地质矿产行业标准DZ/T 0130—2006对于回收率的要求。  相似文献   

17.
铁粉是提取Au的重要原料,故需准确测定铁粉中的Au。采用自制并提纯的碱式碳酸铅作为捕集剂熔融得到铅扣,经加银保护灰吹铅扣将Au进一步富集在银合粒中,压制银合粒成片,采用先加入HNO3加热溶解,再加入HCl加热溶解的方式溶解银片,使Au完全溶解进入溶液,选择像素点为5,采用高分辨率连续光源火焰原子吸收光谱法(HR-CS-FAAS)进行分析,实现了对铁粉样品中Au的测定。实验比较了王水加热溶解-聚氨酯泡沫塑料富集分离和加Ag保护灰吹铅试金法两种样品处理方法。结果表明,采用王水加热溶解样品不能将样品溶解完全,且Au的测定结果相比加Ag保护灰吹铅试金法显著偏低,而采用铅试金法处理样品,样品熔融状态较好、熔渣流动性好,可使Au完全富集在铅扣中。对银合粒的溶解方法进行了试验,结果表明,采用加HNO3加热溶解后再加HCl的分步加热溶解方式可将银合粒溶解完全。共存离子干扰试验表明,样品中的共存离子不干扰测定。在选定的优化实验条件下,Au的吸光度与其对应的质量浓度运用二次方程最小二乘法拟合校准曲线,校准曲线决定系数为0.999 9;方法检出限为0.005 25 μg/g,定量限为0.017 32 μg/g。将所建立的方法应用于实际铁粉样品中0.56~12.6 μg/g Au的测定,结果的相对标准偏差(n=6)为2.3%~3.7%,加标回收率为92%~107%,满足国家地质矿产行业标准DZ/T 0130—2006对于回收率的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号