首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴金  刘凡  吴毅强  姚建楠  王青   《电子器件》2007,30(5):1959-1962
对4阶2-1-1Σ-Δ调制器采用MLTLAB中的SIMULINK工具箱完成其行为级建模,在此基础上分析了各种非理想因素对调制器性能的影响.根据MATLAB系统仿真结果,获得了对时钟抖动、噪声、运放有限增益等参数的设计限制,并为Σ-Δ调制器的电路设计提供了具体参数约束指标.级联Σ-Δ调制器的MATLAB建模分析同样适应于单环高阶Σ-Δ调制器的系统设计.  相似文献   

2.
带通Σ-Δ调制器的双线性变换设计方法   总被引:1,自引:0,他引:1  
本文论述了带通式Σ-Δ调制器的双线性变换设计方法,通过线性化的插入式网络分析技术,将带通式Σ-Δ调制器的设计问题转化为了IIR带阻数字滤波器的设计问题.文章给出了该方法的原理和设计步骤,并对一位Σ-Δ代码的产生和检验方法以及调制器的稳定性问题进行了说明和讨论,最后给出了利用Matlab的计算机仿真结果,结果表明,该方法简单可靠,便于计算机仿真和检验,可大大加快带通Σ-Δ调制器的设计过程.  相似文献   

3.
高阶、高精度是当前Σ-Δ调制器的设计趋势,随着系统结构越来越复杂,带内量化噪声的噪声背景逐渐降低,已不再成为制约调制器精度的主要瓶颈。整个系统的线性失真度对调制器最终精度的影响越来越大,甚至成为决定因素。为提高Σ-Δ调制器的线性度,对运算放大器这一主要非线性源进行了深入的分析,并提出若干优化方案。最后,通过一个三阶单环Σ-Δ调制器结构进行了仿真验证。采用电压放大、AB类输出的运算放大器结构,大大减小了系统功耗。  相似文献   

4.
采用多位D/A转换器是Σ-Δ调制器实现高速高精度的主要手段,然而,多位D/A转换器引入非线性却是影响Σ-Δ调制器信噪比的主要因素.讨论了一种具有单位信号传递函数、动态元件匹配实现多位D/A 转换器并对其引入的非线性噪声压缩整形(NSDEM)的Σ-Δ调制器结构;在此结构上进行了Σ-Δ调制器的设计方法研究.行为仿真结果验证了该结构和设计方法的可行性.  相似文献   

5.
介绍了低电压开关电容Σ-Δ调制器的实现难点及解决方案,并设计了一种1 V工作电压的Σ-Δ调制器.在0.18 μm CMOS工艺下,该Σ-Δ调制器采样频率为6.25 MHz,过采样比为156,信号带宽为20 kHz;在输入信号为5.149 kHz时,仿真得到Σ-Δ调制器的峰值信号噪声失真比达到102 dB,功耗约为5 mW.  相似文献   

6.
高速二阶∑-△A/D调制器的设计   总被引:2,自引:2,他引:0  
文章对二阶Σ-ΔA/D调制器的原理、系统性能及稳定性进行了分析,给出噪声传递函数和信噪比。并根据实际的器件参数和设计准则,应用CMOS开关电容和高速模拟电路技术,用0.6μm工艺实现了一个高速二阶Σ-Δ调制器。  相似文献   

7.
基于一款小数频率合成器的设计要求,采用三阶MASH1-1-1结构设计了一种全数字三阶Σ-Δ调制器,并针对调制器输出的周期性难以消除的问题,在累加器的进位输入端口进行了LFSR加抖。使用MATLAB对三阶Σ-Δ调制器进行了仿真,结果表明,经过MASH1-1-1三阶Σ-Δ调制器整形后的量化噪声被推到频率高端,环路带宽内基本不存在小数分频产生的量化噪声,从而有效地提高了锁相环的性能。  相似文献   

8.
赵宇飞  李扬  于明 《电子设计工程》2011,19(22):181-183
主要描述一种加速度感应系统全差分Σ-ΔCMOS接口IC。电容传感器接口由一个前端可配置开关电容(SC)电荷放大器和一个末端,一阶SCΣ-Δ调制器组成。本设计采用开关双采样技术(CDS)来消减低频噪声,能有效地隔离高性能Σ-Δ调制器和MEMS传感器。采用0.35μm CMOS技术,在3.3 V电源环境下能够理想工作。仿真结果显示该设计能达到0.55 V/g的精度。  相似文献   

9.
在简要介绍高阶1位量化Σ-ΔA/D转换器基本原理的基础上,分析了Σ-Δ调制器的噪声特性;介绍了传统线性模型下的噪声传递函数的设计方法。同时,结合实际高阶模拟Σ-Δ调制器的开关电容实现电路,重点对影响调制器性能的非理想因素进行了详细分析,并采用程序建模仿真的方法指导电路设计。与传统设计方法的结果对比表明,文中的方法可以为电路设计提供更加可靠的依据。  相似文献   

10.
基于增量型Σ-Δ调制器理论,利用Matlab的Simulink仿真工具,建立了考虑非理想因素的3阶前馈式增量型Σ-Δ调制器系统模型,并进行了仿真。仿真结果显示,信号噪声比达到98.2 dB,有效输出位达到16.02位。引入消除失调电压的技术后,基于宏力半导体0.18 μm标准CMOS工艺,对3阶前馈式增量型Σ-Δ调制器进行电路和版图设计,Spice后仿真结果显示,信号噪声比达到92.79 dB,有效输出位达到15.12位。  相似文献   

11.
基于180 nm CMOS工艺,设计了一种应用于音频领域的可重构前馈式3阶Σ-Δ连续时间调制器。传统Σ-Δ连续时间调制器只有一种工作模式,而该设计利用可重构的积分器使Σ-Δ连续时间调制器具有高精度和低功耗两种工作模式。此外,采用的加法器提前技术减小了调制器功耗,负电阻补偿技术提高了调制器的SNDR,额外环路延时补偿技术提高了调制器的稳定性。仿真结果表明,在20 kHz信号带宽、1.8 V电源电压下,低功耗模式下调制器的SNDR为94.7 dB,功耗为291 μW;高精度模式下调制器的SNDR为108 dB,功耗为436.6 μW。  相似文献   

12.
介绍了Σ-Δ调制器的基本原理,设计了一种适合数字音频应用的16位Σ-Δ调制器。该电路采用Chartered 0.5μm标准CMOS工艺实现,工作电源电压为5V,在工作频率为6.144MHz、过采样率为128时,输入带内信噪比可达107dB。  相似文献   

13.
杨培  杨华中 《微电子学》2007,37(6):866-869
连续时间Σ-Δ调制器较之传统的开关电容Σ-Δ调制器具有更低的功耗、更小的面积,以及集成抗混叠滤波器等诸多优势。设计了一种应用于低中频GSM接收机的4阶单环单比特结构的连续时间Σ-Δ调制器。在调制器中,采用了开关电容D/A转换器,以降低时钟抖动对性能的影响。仿真结果显示,在1.8 V工作电压2、00 kHz信号带宽、0.18μm CMOS工艺条件下,采样频率21 MHz,动态范围(DR)超过90 dB,功耗不超过2.5 mW。  相似文献   

14.
洪志良  王晓悦 《微电子学》1998,28(4):265-271
对近采样Σ-ΔA/D转换器作了全面的描述。介绍了Σ-ΔA/D转换器的工作原理,着重推导了转换器中调制器阶数、过采样比和精度的关系,指出了调制器稳定工作的条件。最后,以18位Σ-ΔA/D转换器稳定工作的条件。最后,以18位Σ-ΔA/D转换器的调制器设计为例,详细阐述了Σ-ΔA/D转换器的设计过程,并给出了实验结果。  相似文献   

15.
简要介绍了Σ-Δ调制器的基本原理,设计了一种适合数字音频应用的16位Σ-Δ调制器.该电路采用Chartered 0.5 μm标准CMOS工艺实现,工作电源电压为5 V,在工作频率为6.144 MHz、过采样率为128时,输入带内信噪比可达107 dB.  相似文献   

16.
Σ-Δ调制器在SIMULINK下的噪声模型   总被引:1,自引:1,他引:0  
为了满足在行为级对Σ-Δ调制器进行完整仿真的需要,提出了在SIMULINK环境下Σ-Δ调制器的噪声模型,包括采样时钟抖动、开关热噪声(kT/C噪声)、运算放大器的有限增益、有限带宽、压摆及饱和电压等非理想因素。在给出具体噪声模型的基础上,构造出二阶Σ-Δ调制器模型。通过仿真,验证了噪声模型的正确性。  相似文献   

17.
设计一种新型低非线性失真拓扑的7阶1-bitΣ-Δ调制器,该调制器可以直接用于模拟音频信号输入带反馈的D类功率放大器中。通过仿真表明,调制器的最大稳定输入值可以达到0.9,信噪比可达到130 dB以上,即采用这种调制器的D类功放可实现90%的功率转化效率和高保真的音质。同时从新的角度阐释了高阶1-bitΣ-Δ调制器的工作原理和设计过程。  相似文献   

18.
分析了开关电容型(SC)Σ-Δ调制器的非理想特性,主要包括采样时钟抖动、开关热噪声(kT/C噪声)、运放增益等。在建立各自噪声模型的基础上,构造了一个二阶有色噪声和一个四阶白噪声Σ-Δ调制器模型;通过仿真结果的比较,在行为级上验证了噪声模型的正确性,所建电路更为实际地描述了Σ-Δ调制器的各项参数。  相似文献   

19.
文章对一阶和二阶单级电流模式Σ-Δ调制器作了系统性能及稳定性分析,给出了两者的噪声传递函数。针对系统性能与稳定性这两个相对立的指标,给出了极点的设计指引。最后介绍了一个一阶调制器的设计实例。  相似文献   

20.
王彬  何光旭  肖姿逸  李健 《微电子学》2017,47(5):644-647
设计了一种高精度单环3阶Σ-Δ调制器。阐述了Σ-Δ调制器的结构,确定了前馈因子和增益因子等重要参数。对调制器的各种非理想因素,如时钟抖动、开关非线性、采样电容kT/C噪声等,进行了量化分析和行为级建模。采用MATLAB工具进行了系统验证。验证结果表明,调制器的采样频率为100 kHz,信噪比为99 dB,信噪比最大值为104.2 dB,有效精度达16 位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号