首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
采用电感耦合等离子体原子发射光谱法测定钨精矿中的锡,实验对分析谱线、熔融条件、载体及其用量和共存离子干扰等方面进行了考察,进行了精密度实验和方法比对,结果表明实验方法准确度高、精密度高。  相似文献   

2.
建立了电感耦合等离子体原子发射光谱法测定矿石样品中钨的新方法。采用Na2O2熔融分解矿石样品,热水浸取,使钨完全进入碱性溶液,再向分取定量体积的碱性溶液中加入适量的酒石酸溶液络合钨,然后加入50 mL HCl(1+9)溶解,并在波长224.875{149}nm处于选定的仪器参数下以电感耦合等离子体原子发射光谱法测定溶液中的钨。样品前处理简单、快速,且在波长224.875{149}nm处钨未受到其它元素明显的光谱干扰。溶液中钨原子发射光谱强度与ρ(WO3)在0~20μg/mL范围内呈良好的线性关系,校准曲线相关系数为0.99998。方法检出限为0.040μg/mL。用本方法测定了标准物质中钨的含量,测定值与认定值吻合,相对标准偏差(n=4)为0.99%~2.6%。  相似文献   

3.
采用过氧化钠在高温下熔融钨精矿样,用盐酸酸化提取。使用电感耦合等离子体光谱法,同时测定出钨精矿中硫、锡的含量。实验中选取了仪器最佳工作参数,选择了合适的分析谱线,调节了溶液适当的介质酸度,有效地降低了共存元素对测定的干扰。进行了精密度实验和方法对比,结果表明,该实验方法操作简单,准确度高,精密度高,适用于钨精矿杂质元素硫、锡的日常分析工作。  相似文献   

4.
钨精矿作为钨产品的重要原料,其中的钡会与钨形成难溶的沉淀,故钡含量直接影响钨产品的品质及回收率。实验称取0.500 0 g样品于盛有2 g无水碳酸钠的银坩埚中,覆盖1 g氢氧化钠、1 g过氧化钠和0.1 g氯化锶,在700℃熔融15 min;水浸过滤后以硝酸、高氯酸溶解滤渣;选择Ba 455.40 nm作为分析线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钨精矿中钡的方法。结果表明:钡的质量浓度在0.5~10.0μg/mL范围内与其发射强度呈线性关系,线性相关系数大于0.999 9。钨精矿中铁、钙、镁、锰、镍等共存元素对钡的测定无干扰;方法检出限为0.000 78%,定量限为0.002 6%。按照实验方法测定钨精矿样品中钡,结果的相对标准偏差(RSD,n=11)为1.4%~1.6%,回收率为92%~105%。8个实验室采用实验方法对钨精矿样品中钡进行测定,统计数据结果表明该方法精密度满足产品检测需求,并形成国家标准方法进行推广。  相似文献   

5.
高亮 《冶金分析》2013,33(9):49-52
试样经硝酸和氢氟酸低温溶解,加入高氯酸冒烟,盐酸溶解盐类,用电感耦合等离子体原子发射光谱法测定了萤石中硫的含量。研究了基体效应、共存元素间干扰及校正。结果表明,基体氟化钙和共存元素Al、Fe、Ba、Mn、P对测定无影响。在选定条件下,硫的含量在0.003%~6.5%范围内与发射强度线性关系良好,相关系数大于0.9990。方法应用于萤石标准样品YSB1479-02和实际样品分析,结果与认定值或燃烧碘量法吻合,11次平行测定的相对标准偏差(RSD)不大于1.5%,回收率在96%~104%之间。  相似文献   

6.
张莉 《山东冶金》2013,(1):44-45
用HNO3和HF溶解样品,加HClO4冒烟,采用ICP-AES直接测定焦炭中的磷。分析谱线为213.618nm,通过同步背景扣除消除背景干扰及光源噪音,选定了仪器的最佳工作条件。结果表明,该方法简单快捷,检出限为0.010μg/mL,RSD(n=8)为1.034%,加标回收率在98.7%~101.4%,用于实际样品分析,测定结果与标准值和其他方法的测定值相符。  相似文献   

7.
邹龙  刘荣丽  易师 《冶金分析》2014,34(11):65-68
以盐酸和过氧化氢溶解样品,电感耦合等离子体原子发射光谱法(ICP-AES)测定了铝钨合金中钨。着重研究样品的溶解条件,确定了先加入盐酸至铝基质颗粒反应完全后再加入10 mL过氧化氢的试剂加入顺序。过氧化氢用量随着样品中钨含量的不同而不同,但对于溶解钨含量为0.10%~15%铝钨合金样品,过氧化氢加入量在100 mL以下对测定结果无影响。钨的质量浓度在500 mg/L内校准曲线的线性关系良好,相关系数为0.999 5。基体铝对测定的影响采用基体匹配方法消除。方法应用钨质量分数不同的铝钨中间合金分析,钨的测定值与辛可宁重量法测定值一致,回收率在98%~102%之间,相对标准偏差(RSD,n=9)为2.8%~5.1%。方法能满足科研与生产的快速检测需要。  相似文献   

8.
采用电感耦合等离子体原子发射光谱法测定类石墨中磷,并对测定条件和基体干扰进行了考察,结果表明,类石墨在815℃温度下灼烧1h,灰分用硝酸、氢氟酸和高氯酸溶解,分析样品中的主要成分SiO2已挥发除去,余下Al2O3基体对测定不存在干扰,无需分离和进行基体匹配。对标准曲线法和基体匹配法测定结果进行比较,两者无显著差异,可通过简单的标准曲线法对其进行测定。在选择最佳仪器条件下,测定磷的检出限为0.0012μg/mL。方法应用于类石墨中磷的测定,回收率为96%~104%,相对标准偏差小于4.0%(n=6)。  相似文献   

9.
采用在密闭塑料瓶中硝酸、氢氟酸常温常压分解样品,系统分析了样品中痕量杂质元素V、Ti、Mo、Fe、Sb、Pb、As、Co、Mg、Ca、Mn、Al、Sn、Na、K、Ni、Cr、Cd、Si、Cu、P、Bi的光谱干扰情况及钨酸沉淀分离基体后各元素的回收率情况,最终确立了电感耦合等离子体原子发射光谱(ICP-AES)法测定钨产品中痕量元素的方法。V、Ti由于基本不受基体干扰,钨酸沉淀分离基体后回收率较低,采用在校准曲线中补加基体的方法对其进行测定,其中V的测定下限为5.2μg/g,Ti的测定下限1.3μg/g:Co、Mg、Ca、Mn、Al、Na、K、Ni、Cr、Cd、Si、Cu、Pb、Sn、As、Sb、Bi等元素,受钨基体干扰比较严重,采用钨酸沉淀分离基体后,回收率均在90.0%以上,故采用沉淀分离基体,水标直接测定,各元素的测定下限均在0.10~6.7μg/g之间:而对于受钨基体严重干扰,而且钨酸沉淀分离基体后回收率较低的Fe、Mo、P3元素,目前没有很好的解决方案。此方法为解决钨产品中痕量杂质元素测定提供了一种有效可行的方法。  相似文献   

10.
提出了一种快速而准确测定AZ系列镁合金中磷的方法。以盐酸和过氧化氢溶解样品, 选择213.618 nm波长的谱线作为分析线, 采用基体匹配校准曲线, 电感耦合等离子体原子发射光谱法(ICP-AES)测定试液中磷含量。测定100 mL试液中120 μg磷时, 500 mg镁、200 mg铝、10 mg锌、1.0 mg锰对测定没有干扰。AZ系列镁合金样品基本不含钼和铜, 且钼干扰线的强度很弱和所用仪器对磷与铜谱线的分辨率比较高, 因此钼和铜对磷测定的影响可以不考虑。方法的检出限为0.028 mg/L。方法用于测定铸造镁合金中0.005 0%~0.15%的磷含量, 测定结果的相对标准偏差在0.57%~2.1%之间, 回收率在94%~110%范围。方法可用于AZ系列镁合金产品中磷成分的质量控制。  相似文献   

11.
样品经硝酸和氢氟酸分解后,以高纯钴为基体配制校准系列溶液,在电感耦合等离子体原子发射光谱仪上测定了样品溶液中磷含量。通过试验确定了酸度、样品提升量、雾化气流速、功率、观测高度、分析谱线等分析条件。铌和锆的干扰试验结果表明,样品中的铌和锆不影响磷含量的测定。考察了快速自动谱线拟合技术(FACT),结果表明,使用该技术能够消除Co 178205 nm谱线对P 178222 nm的干扰。在用P 178222 nm和P 213618 nm作分析线测定磷时,方法的检出限分别为0000 6% 和 0000 5%(相对于02 g样品,定容至50 mL),加标回收率在93%~112%之间,相对标准偏差小于10%(n=7)。本方法测定样品中磷含量的结果同光度法测定结果相符。  相似文献   

12.
目前在黄金行业,金精矿冶炼过程中环保元素如铊、砷等的检测受到越来越多的关注,而金精矿中铊的检测尚无标准可依。采用盐酸、硝酸、氢氟酸、高氯酸分解金精矿样品,在王水介质中,在过氧化氢、三氯化铁存在下,使用聚氨酯泡沫富集铊,与杂质元素分离,并在沸水浴中使用硝酸(1+99)进行解脱,选择Tl 190.801nm为分析线,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铊,建立了金精矿中铊的测定方法。通过试验,确定了最优分离富集参数,即为15%(V/V)王水、3%(V/V)过氧化氢、0.5g/L铁盐介质。铊的质量浓度在0.10~500μg/mL范围内与其发射强度呈线性,相关系数为0.999 9;方法的测定下限为6.5μg/g。金精矿中共存元素由于泡沫的分离富集作用而不影响测定。实验方法用于测定4个金精矿样品中铊,结果的相对标准偏差(RSD,n=11)为2.1%~5.0%;按照实验方法对金精矿样品中铊进行加标回收试验,回收率为92%~101%。  相似文献   

13.
张宁 《冶金分析》2011,31(5):60-62
提出了一种用电感耦合等离子体原子发射光谱法(ICP-AES)快速测定铜精矿和铅精矿中二氧化硅的方法。采用刚玉坩埚,以过氧化钠为熔剂,在高温下熔融试样,熔块经热水浸取,盐酸酸化处理后进行基体稀释,再加入内标元素Au,采用内标法校正,有效克服了基体效应及仪器波动所产生的影响。本法对二氧化硅的检出限为0.006 3 μg/mL,测定范围(质量分数)为0.02%~10%,用于铜精矿和铅精矿标准物质的测定,测得值与认定值一致,相对标准偏差(RSD)小于3%(n=5)。  相似文献   

14.
王艳君  周蕾  蒋晓光 《冶金分析》2019,39(12):61-67
铜磁铁矿作为冶炼铜和铁的重要原料,有害元素硫含量较高。试样经逆王水消解、氢氟酸挥硅和高氯酸进一步氧化后,在硝酸体系中,选择S 182.034nm为分析谱线,使用铁基体匹配的标准溶液系列绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高硫铜磁铁矿中硫。硫质量浓度为0.10~150μg/mL时与其发射光谱强度呈良好的线性关系,线性相关系数为0.9998;方法检出限为0.0135%。实验方法用于测定5个含量水平高硫铜磁铁矿样品中硫,测定结果的相对标准偏差(RSD,n=11)为2.1%~3.7%,与高频燃烧红外吸收法的测定结果没有显著性差异。方法的重复性标准差为Sr=0.0135x+0.0143,重复性限为r=0.0379x+0.0396,再现性标准差为SR=0.0232x+0.0137,再现性限为R=0.0653x+0.0383。  相似文献   

15.
王艳君  周蕾  蒋晓光 《冶金分析》1982,39(12):61-67
铜磁铁矿作为冶炼铜和铁的重要原料,有害元素硫含量较高。试样经逆王水消解、氢氟酸挥硅和高氯酸进一步氧化后,在硝酸体系中,选择S 182.034nm为分析谱线,使用铁基体匹配的标准溶液系列绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高硫铜磁铁矿中硫。硫质量浓度为0.10~150μg/mL时与其发射光谱强度呈良好的线性关系,线性相关系数为0.9998;方法检出限为0.0135%。实验方法用于测定5个含量水平高硫铜磁铁矿样品中硫,测定结果的相对标准偏差(RSD,n=11)为2.1%~3.7%,与高频燃烧红外吸收法的测定结果没有显著性差异。方法的重复性标准差为Sr=0.0135x+0.0143,重复性限为r=0.0379x+0.0396,再现性标准差为SR=0.0232x+0.0137,再现性限为R=0.0653x+0.0383。  相似文献   

16.
研究了电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铅精矿中主体元素铅及杂质元素锌、铜、铝、镁、砷含量的分析方法。试样经氢氧化纳-过氧化钠熔融,用盐酸提取并酸化后以ICP-AES测定。对溶样条件、测定介质、基体及共存元素间干扰进行了讨论,结果表明:质量分数小于5%的硫、小于10%的硅、小于20%的铁等共存元素对待测元素几乎没有干扰;方法基体效应较小,各待测元素之间没有明显干扰。方法用于标准样品和实际样品的测定,结果分别与认定值或其他方法的测定值相符。  相似文献   

17.
准确分析铌钽精矿中铌、钽含量,对选冶及新材料的研发具有重要意义。实验以氢氧化钠作为熔剂,使用银坩埚,通过碱熔方式消解样品(熔融温度为720℃,熔融时间为20min),再酸溶后使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铌钽精矿中铌、钽。对样品常见的消解方式、内标元素和分析线对的选择、共存元素的影响等因素进行了试验研究。结果表明:确定钴作为铌的内标元素,铬作为钽的内标元素,分析谱线及内标线为Nb 309.4nm-Co345.3nm、Ta 240.0nm-Cr 284.3nm。铝、硅、钾、钠、钙、镁、铜、铅、锌、硫酸根、锰、磷、铬、钡、钴、砷、镍、锶、铍、钪、锡等不会对铌、钽的测定产生干扰。方法中铌和钽的检出限分别为0.007%和0.011%。按照实验方法测定4个铌钽精矿实际样品中铌和钽,并以多家实验室的测定平均值作为推荐值进行比对,结果表明,铌和钽测定结果的相对标准偏差(RSD,n=10)均小于0.6%,相对误差处于±5%之间。  相似文献   

18.
石灰性土壤中有效磷的测定通常采用钼锑抗分光光度法,操作复杂、检出限高。采用碳酸氢钠浸提-基体掩蔽结合电感耦合等离子体原子发射光谱法(ICP-AES)实现了对大批量土壤样本中有效磷的高效分析。实验中采用pH值为8.5、0.5 mol/L碳酸氢钠溶液为浸提液,按照20∶1的水土比(浸提液体积(mL)与土壤质量(g)之比)于(25±1)℃下振荡提取30 min;用定量滤纸过滤后,分取20.00 mL滤液,加入2 mL 硝酸(1+1)酸化,用250 mg的丁二酸掩蔽碱金属离子,选择P 214.914 nm为分析谱线,采用ICP-AES测定磷。结果表明,磷质量浓度与其发射强度在一定范围内呈良好的线性关系,线性相关系数为0.999 7。方法检出限为0.004 6 mg/kg,定量限为0.015 mg/kg。方法用于测定土壤标准物质(GBW07413a、GBW07414a、GBW07459、GBW07460、GBW07461)中有效磷,测定值与认定值基本相符,测定结果的相对标准偏差(RSD, n=6)为0.87%~2.1%;用于土壤样品中有效磷的测定,测定结果的相对标准偏差(n=6)不大于1.7%,与农业部标准方法(NY/T 1121.7—2014)测得的结果基本一致,无显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号