首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The series parallel resonant converter (SPRC) is known to have combined the merits of the series resonant converter (SRC) and the parallel resonant converter (PRC). However, the series PRC (SPRC) has a three-element LCC structure with complex transient dynamics and without control of the resonant circuit's dynamics, the converter's closed loop bandwidth to switching frequency ratio will be much reduced compared to that of pulsewidth modulation converters. In this paper, the generalized optimal trajectory control (GOTC) for the SPRC is presented. It allows the nonlinear resonant circuit of the SPRC having an arbitrary starting state to reach a desired steady state in one cycle with two optimally controlled switching instances. It is a generalized form of optimal trajectory control (OTC) which is restricted to transitions between steady states. Based on GOTC, a traditional controller with inner current and outer voltage state-feedback is designed for an SPRC based dc–dc converter. The GOTC based feedback controller allows use of higher feedback gains compared with one using OTC or frequency control and gives higher closed loop bandwidth. This results in either better disturbance rejection for the converter or the possibility of reducing output filter sizing. Experimental results confirm the theoretical claims.  相似文献   

2.
This paper proposes a novel resonant circuit capable of PWM operation with zero switching losses. The resonant circuit is aimed at providing zero voltage intervals in the DC link of the PWM converter during the required converter device switching periods, and it gives minimum DC bus voltage stresses and minimum peak resonant current. It requires only two additional switches compared to a conventional PWM converter. It is observed that the resonant circuit guarantees the soft switching of all the switching power devices of converters including the switches for resonant operation. Simulation results and experimental results are presented to verify the operating principles  相似文献   

3.
A novel robust control method for the series–parallel resonant converter (SPRC), which moves the inverter switching point to switch in advance or with lag w.r.t. the rectifier commutation point (RCP), thereby varying the converter gain around the load-independent point, is presented. The converter gain is derived using a novel analytical tool that combines state-plane analysis and superposition with added RCP constraint. Unlike traditional fundamental harmonic analysis , the exact gain and frequency expressions for the SPRC at the load-independent point and its neighborhood are obtained with this method. The proposed gain adjustment technique is combined with feedback to form a simple resonant converter controller. This control method is shown to be highly robust to resonant tank parameter uncertainty and circuit/switching delay. It also significantly simplifies the resonant converter controller's design.   相似文献   

4.
A zero-voltage-switched (ZVS) pulsewidth-modulated (PWM) boost converter with an energy feedforward auxiliary circuit is proposed in this paper. The auxiliary circuit, which is a resonant circuit consisting of a switch and passive components, ensures that the converter's main switch and boost diode operate with soft switching. This converter can function with PWM control because the auxiliary resonant circuit operates for a small fraction of the switching cycle. Since the auxiliary circuit is a resonant circuit, the auxiliary switch itself has both a soft turn on and turn off, resulting in reduced switching losses and electromagnetic interference (EMI). This is unlike other proposed ZVS boost converters with auxiliary circuits where the auxiliary switch has a hard turn off. Peak switch stresses are only slightly higher than those found in a conventional PWM boost converter because part of the energy that would otherwise circulate in the auxiliary circuit and drastically increase peak switch stresses is fed to the load. In this paper, the operation of the converter is explained and analyzed, design guidelines are given, and experimental results obtained from a prototype are presented. The proposed converter is found to be about 2%-3% more efficient than the conventional PWM boost converter  相似文献   

5.
A single-phase high-frequency transformer isolated single-stage AC-to-DC controlled rectifier with low line current harmonic distortion using a variable-frequency controlled LCC-type (or series-parallel) resonant power converter (SPRC) is presented. A simple analysis and design procedure is used for designing the converter for low line current harmonic distortion and high power factor operation. The converter performance characteristics have been verified with SPICE3 simulations (without active control) and experimental prototype SPRC (rated at 150 W, with and without active control) for variation in load as well as line voltage. When operated with active current shaping, this converter operates in zero-voltage-switching mode for the complete range, maintaining power factor close to unity with low line current distortion and low peak current compared to the parallel resonant converter  相似文献   

6.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

7.
This paper proposes a real-time control method of a series resonant high-frequency linked DC-AC converter employing quasi-zero current switching (quasi-ZCS) and a feedback control method for sinusoidal output voltage. An approximate analysis of the converter is performed, and then simplified equations and an equivalent circuit similar to the conventional PWM inverters/inverters are obtained. A real-time feedback control of the converter is realized using the equivalent circuit without detecting HF link current. The usefulness of the proposed control algorithm is confirmed by experimental results  相似文献   

8.
A new AC/AC power converter topology, in which all the switches operate in a resonant fashion to reduce switching losses, is proposed. The topology enables conduction-period control of individual current pulses, whereby pulse-width modulation (PWM) could be achieved to a fair degree of accuracy with the associated controller. The scheme implements current peak (resonant) limiting by a simple diode clamp. Improved switch utilization (voltage × current) and reduced part-count could be cited as the merits of the circuit over the previous soft-switched current-sourced AC/AC configurations. It is experimentally verified that the output PWM controller could be used to implement constant V/F operation, and the results are presented. In-depth design criteria for the topology that gives optimized voltage stresses are presented. A charge-based, line current feed-forward, mode-controller is introduced at the input and digitally verified. Feasibility of the simultaneous control over both input power-factor and smooth input-output line currents are studied and the digital verification is presented  相似文献   

9.
A zero-voltage-transition pulse-width modulation (ZVT-PWM) converter composed of a conventional PWM circuit and a resonant tank to achieve zero-voltage switching, resulting in low voltage and current stresses and zero capacitive turn-on losses. In this paper, the analysis and passivity-based control of the ZVT-PWM buck converter are presented. A generalized state space average model of the ZVT-PWM buck converter is derived. The controller design is carried out using the derived model and follows the "energy shaping plus damping injection" ideas of the passivity-based approach. Both direct and indirect output voltage regulation schemes are addressed. Simulation results are presented to illustrate the features of the proposed controllers.  相似文献   

10.
Small-signal analysis of the phase-shifted PWM converter   总被引:10,自引:0,他引:10  
The specific circuit effects in the phase-shifted PWM (PS-PWM) converter and their impact on the converter dynamics are analyzed. The small-signal model is derived incorporating the effects of phase-shift control and the utilization of transformer leakage inductance and power FET junction capacitances to achieve zero-voltage resonant switching. The differences in the dynamic characteristics of the PS-PWM converter and its PWM counterpart are explained. Model predictions are confirmed by experimental measurements  相似文献   

11.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

12.
为提高转换效率并降低电源开关的电流应力,提出一种基于新型有源缓冲电路的PWM DC-DC升压变换器。该有源缓冲电路使用ZVT—ZCT软开关技术,分别提供了总开关ZVT开启及ZCT闭合、辅助开关ZCS开启及ZCT闭合。消除了总开关额外的电流及电压应力,消除了辅助开关电压应力,且有源缓冲电路的耦合电感降低了电流应力。另外,通过连续将二极管添加到辅助开关电路,防止来自共振电路的输入电流应力进入总开关。实验结果表明,相比传统的PWM变换器,新的DC-DC PWM升压变换器在满负荷时电流应力降低且总体效率能达到98.7%。  相似文献   

13.
在宽范围输出电压及负载变化范围较大的应用场合,LLC谐振变换拓扑的高频区不单调现象及考虑过高开关频率的限制,单纯的调频控制难以满足要求,业界常用的解决方案是在PFM基础上引入PWM控制。这种混合控制模式的LLC电路在PWM工作模态特定条件下桥式电路出现的“上管MOSFET体二极管反向恢复、下管开通”的瞬时直通现象将引起MOSFET电压电流应力超标而失效。分析了失效模式机理、提出了解决方案并进行了实验验证。  相似文献   

14.
A soft switching quasi-parallel resonant DC-link (QPRDCL) inverter with improved PWM capability has been recently presented. The circuit has the minimum voltage stress of the devices and provides the flexibility of selecting the on/off instants of the resonant link, resulting in improved PWM capability. In this paper, the operational principles and the detailed analysis of the QPRDCL inverter are presented for the resonant components design and the inverter control. An SVPWM with optimal vector sequence suitable for the QPRDCL inverter is also presented through the comparisons among five different modified space vector PWM (SVPWM) techniques classified by the voltage vector sequences. The performance of the selected optimal SVPWM is verified by the experimental results  相似文献   

15.
Self-commutated auxiliary circuit ZVT PWM converters   总被引:1,自引:0,他引:1  
This paper introduces a novel class of zero voltage transition (ZVT) DC/DC pulse-width modulation (PWM) converters that use a resonant inductance-capacitance (L-C) circuit connected to the auxiliary switch, which is termed a self-commutated auxiliary circuit. It provides a simple and reliable means of achieving zero-current conditions (ZCS) for auxiliary switch commutations under wide line and load ranges, without the inclusion of any kind of DC voltage source. Furthermore, this auxiliary circuit is placed in parallel with the main power converter, retaining the ZVT characteristics. The self-commutated auxiliary circuit ZVT PWM boost is analyzed, and its feasibility and reliability are confirmed by experimental results obtained from laboratory prototypes rated at 1 kW and 100 kHz.  相似文献   

16.
A high-efficiency, unity-power-factor VVVF (variable voltage, variable frequency) drive scheme for an induction motor is presented. A unity-power-factor PWM (pulsewidth modulated) converter regulates DC voltage. An inverter circuit with the magnetic flux control PWM method generates VVVF PWM waveforms. The modulation factor of the inverter PWM control with controllable DC link DC voltage is studied. As a result, the distortion factor and the switching frequency are reduced by over-modulation with low DC link voltage. A high-efficiency and unity-power-factor VVVF induction motor drive has been achieved using the control strategy  相似文献   

17.
A new control scheme named optimum quantum sequence control (OQSC) which always minimizes the output voltage ripple of the quantum series resonant converter (QSRC) for all possible sequences is proposed. This control scheme is so general that it is irrelevant to all circuit conditions such as magnitudes of circuit elements as well as input/output voltage so far as it is operating in the continuous conduction mode (CCM). Furthermore, the dynamic range of QSRC is much extended by the OQSC. This feature is verified by simulations and experiments with good agreements  相似文献   

18.
王巍  童涛  赵汝法  吴浩  郭家成  丁辉  夏旭  袁军 《微电子学》2023,53(4):647-653
在降压转换器中,为了在不同的负载情况下获得高效率,常采用的方法是在重载时使用脉冲宽度调制(PWM),在轻载时使用脉冲频率调制(PFM),因此需要模式切换信号去控制整个降压转换器的工作状态,同时模式切换信号也可以用于自适应改变功率级电路中的功率管栅宽,减小功率管的栅极电容,提高整体电路的效率。文章设计了一个自适应峰值电流模式切换电路,用于产生模式切换信号,其原理是监控峰值电流的变化,产生峰值电压,将峰值电压与参考电压进行比较,得到模式切换信号,以决定降压转换器是采用PFM模式还是PWM模式。仿真结果表明,在负载电流0.5~500 mA范围内,该电路可以在两种调制模式之间平稳切换,其峰值效率可提升到94%以上。  相似文献   

19.
本文基于单片机与电子电力技术,设计许制作出一种开关稳压电源。采用改进型Boost直流斩波电路作为DC—DC变换器主要部分,增加主电路电流采样反馈和电压采样反馈,充分利用主控制器Atmega16单片机内部资源,自行设计二次型最优PID算法,实现闭环PWM控制。本装置人机交互界面友好,工作状态和各种参数显示清晰。性能达到2007年全国大学生电子设计竞赛题目7项基本要求和5项发挥部分要求.并可实现负载过流报警和记录故障持续时间等功能。  相似文献   

20.
This paper presents the analysis of open-loop power-stage dynamics relevant to current-mode control for a boost pulsewidth-modulated (PWM) dc-dc converter operating in continuous-conduction mode (CCM). The transfer functions from input voltage to inductor current, from duty cycle to inductor current, and from output current to inductor current are derived. The delay from the MOSFET gate drive to the duty cycle is modeled using a first-order Pade/spl acute/ approximation. The derivations are performed using an averaged linear small-signal circuit model of the boost converter for CCM. The transfer functions can be used in modeling the complete boost PWM converter when current-mode control is used. The theory was in excellent agreement with the experimental results, enforcing the validity of the transfer functions derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号